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CONTROL OF INTEGRATED VOICE/DATA MULTI-HOP RADIO NETWORKS
VIA REDUCED-LOAD APPROXIMATIONS

1. INTRODUCTION

In this report, we address one of the major issues in multi-media networks: the com-
bined (joint) admission control of voice calls and routing of data packets through the
network. These two problems have been traditionally dealt with separately [1]-{3]. How-
ever, with the advent of ISDN and multi-media services [3], it has become necessary to
design routing and call set up or scheduling schemes jointly, so that the network resources
(bandwidth of links, processors at nodes) are used efficiently and all user requirements
about the offered quality of services (QOS) of the different traffic types (e.g., data, voice,
and video) are met.

One of the major obstacles in the joint optimization of voice admission control (or
scheduling) and data routing schemes and, in general, of schemes which control admission,
access, and routing for multi-media traffic, is the difficulty in obtaining (or the complete
lack of) closed-form expressions for the performance measures characterizing QOS of the
different traffic types.

In many practical situations where such optimizations are required, simplistic ap-
proximations of low accuracy are used to evaluate the performance measures of interest.
These approximations neglect the interaction and interdependencies caused by the multi-
hop network operation and the sharing of the network resources by the different traffic
types. Consequently, the control schemes derived from the optimization of these coarsely
approximated performance measures are sub-optimal and the network resources may not
be utilized efficiently.

By contrast, the emphasis of this report lies in (i) the identification of appropriate
methods for approximating accurately the performance measures involved in the problems
of admission control of voice calls and of routing of data packets in integrated networks and
(ii) the derivation of optimal schemes for admission control and routing on the basis of these
approximations. In this context, some existing results on reduced-load approximations
for voice traffic [4]-[10] are used, their applicability is extended from wired networks to
wireless networks, and their accuracy is validated for a broader range of network and
traffic parameters; in addition, new results for data traffic are derived for the first time.

All approximations vsed are compared to each other and to confidence intervals of the
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actual performance measures derived via the Monte-Carlo summation method for a broad
range of parameters of the traffic types.

Although the approximations and performance measures used in this report pertain
to voice and data traffic and are used for the optimization of voice admission control and
data routing schemes, they are in principle applicable to other problems (e.g., scheduling
or set up of calls and data routing) and different traffic types (e.g., data, voice, and video).
Actually, regarding the latter issue, our results cover multi-rate scenarios, according to
which different iraffic iypes may have different bandwidth requirements; thus, if voice
but not video traffic is involved, voice traffic of different bit rates (and thus quality) can
be accommodated. When video traffic is also present, our approach requires substantial
modification to accommodate the variable rate traffic of video sources; however, it can be
definitely extended to this case and thus it finds application to true multi-media scenarios.

Moreover, in our model of voice sources, we accommodate both periods of activity
and silence. If the silent periods can be sensed by the network nodes, then the data users
can, at least in theory, take advantage of this and utilize the released bandwidth, thus
increasing the efficiency of the protocols. In practice, this monitoring of silence periods
and talkspurts can be readily implemented only in certain situations and architectures and
at the expense of channel bandwidth and additional complication in the network protocols;
this issue is discussed further in Section 2.2.1.

Finally as elaborated in Section 12.4 the approximations of this report are also ap-
plicable (after suitable modification) to interesting problems of high-speed networks such
as (i) call set-up and admission control in Asynchronous Transfer Mode (ATM) and (ii)
multicasting of hierarchically encoded data.

The cost function that can be employed in the optimization of the voice admission
control and data routing schemes consists of the weighted sum of

(i) the average blocking probabilities along the paths of voice calls
and
(iil) the average probabilities of queuing of data along the links of the network or
(ii2) the average data delays along the links of the network
Closed-form expressions for the above quantities are either not available [as is the case for
(ii1) and (ii2)), or, even when they are available [as is the case for the product form of

(1)), they are very difficult to compute for moderate to large size networks. This difficulty
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is actually amplified by the fact that in optimization problems such as joint voice and
data routing or voice admissioa control and data routing, the performance measures above
may have to be evaluated repeatedly for several differents paths or links. It is exactly this

difficulty that we attempt to circumvent in our work.

The approach followed in this report can then be summarized as follows. We use
existing approximations or develop new orcs for the average probability of voice blocking,
the average probability of data queueing, and the average data-packet queueing data delay,
and employ those instead of the exact expressions to derive near-optimal admission con-
trol schemes based on thresholds for the voice traffic (see Table 20). We do not derive
optimal routing schemes for the data traffic in this report but since we approximate accu-
rately the data revenue (and voice revenue) sensitivities with respect to the link capacities,
the offered voice loads, and offered data loads, we can obtain near-optimal data routing

schemes by using standard routing algorithms [2] based on these derivatives (sensitivities).

For voice blocking probabilities, we consider approximation methods suggested
by Kelly [4]-[5] and the knapsack, Pascal, and Monte-Carlo summation approximation
methods employed by Ross [6]-[9]. Mitra’s approximation method [10] is also critically
considered. All these approximations are known to be asymptotically correct (accurate)
under a limiting regime, according to which both the capacity of the links of the radio
network and the average input voice traffic (loads) increase to large values, while their

ratio remains constant.

These approximation techniques are based on several distinct concepts and have vary-
ing degrees of accuracy and convergence range. Kelly’s approximation [4]-[5] is based
on an inter-link independence assumption for voice traffic. The knapsack approxima-
tion (used by Ross in [6] and [8]) is based on a stochastic knapsack concept. The Pascal
approximation (used by Ross in [6] and [9]) is based on a birth-death process for mod-
eling voice traffic that follows the Pascal distribution. The Monte-Carlo summation
method employs acceptance/rejection methods used primarily in simulation techniques
in order to evaluate multi-dimensional integrals under constraints [7]. This method gener-
ates confidence intervals for estimators of the actual performance measures of interest, and
thus can be used to provide reliable means of comparison among all other approximations
even when the exact expressions are not available or require prohibitive computational

effort. Mitra’s approximation [10] uses a Taylor series expansion on the normalization
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constant of the product form of the voice steady siate probability distribution.

As part of our effort, the accuracy and convergence range of the knapsack and
Pascal approximations were verified by comparing the approximate results with those
obtained using the exact expressions (where feasible) or confidence intervals generated via
the Monte-Carlo summation method. The agreement was found to be very satisfactory,
not only for the average performance measures, i.e., the probabilities of voice blocking
and data queueing (or the data queueing delay) when averaged over the traffic of all
circuits or links, respectively, but also for similar performance measures corresponding to
the individual circuits or links of the network.

Consequently, we use the knapsack approximation for the optimization of the
thresholds for the admission control of voice calls. Besides the wired mrlti-rate
loss networks of [6]-[10], we also considered radio networks modeled as in [11}-[12] where
the transceivers at the nodes (rather than the link capacities) are the network resources.
The application of these approximations to radio networks is new, and different technical
problems than those of the multi-rate loss networks had to be addressed. However, the
results based on Mitra’s approximation were rather disappointing and will not be used in
our optimization, despite the fact that we had extended the approach to general network
topologies and multi-rate networks. A brief discussion of Mitra’s approach and our assess-
ment of its applicability to the problems considered in this report is presented in Section
4.4.

For the probabilities of queueing and the queueing delays of data, we use Klein-
rock’s independence assumption for data traffic; according to this assumption, the
distribution of interarrival data packet times to the various internal nodes of the network
remains exponential, even after the data packets have been serviced at intermediate links.
Voice always maintains priority over data in our models. Due to the much longer average
duration of typical voice calls compared to that of data packets (whose arrival process is
characterized by a Poisson distribution), it is reasonable to assume that the voice state of

the network changes much slower than that of the data state.

We can thus evaluate the probability of queueing of data (and the queueing delay)
conditioned on the voice state (i.e., the number of active and inactive voice calls in the
network); then we average with respect to the steady-state probability distribution of the
voice state. Both M/M/c and M/D/c models for data queueing at the links have been
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considered. We have performed the aforementioned averaging of the M/M/c or M/D/c
expressions (conditioned on the voice state) with respect to the voice state, according to
the knapsack and Pascal approximation methods. This is a novel approach first appearing
in this report. We limited attention to these data models because of constraints in the
preparation time and the length of this report; the applicability of our approach is not
restricted to these models, it can be applied (with proper modification) to any other data
models as long as the assumption holds that changes in the state of the network voice
traffic are much slower than those in the data traffic.

Finally, the sensitivities of suitably defined voice and data revenue measures
with respect to link capacities (or number of node transceivers), voice loads,
and data loads were evaluated via the knapsack approximation and shown to be very
close to the actual values (refer to Tables 21 and 22). Again, these approximate sensitivities
are much more computationally efficient than the cumbersome (and usually prohibitive)
exact expressions. Actually, as our results establish, there will be almost negligible loss
in revenue when voice-control schemes use these approximate sensitivities in place of the

exact ones.

With the help of the aforementioned revenue sensitivities, important practical prob-
lems of allocating additional network resources in response to increasing voice and/or
data network traffic demand can be easily handled with our approach, as well as problems
of data routing in which the derivatives of the data delay (or the probability of queueing)
are used by standard optimal routing algorithms. In this context near-optimal schemes for
the joint voice admission control and data routing can be derived for both single-
rate and multi-rate networks. This can also be accomplished for nezr-optimal schemes for
joint call set-up and data routing. The range of applications of this methodology
actually includes single-rate and multi-rate networks, wired or wireless (radio) networks,

as well as high-speed networks.

It should be noted that, as summarized in Table 23, the computational effort required
for the knapsack and Pascal approximations and the Monte-Carlo summation method
compares very favorably with that necessary for the evaluation of the exact expressions.
The reduced complexity permits the use of the approximations of this report for on-line

optimization purposes.

1.1. Outline of the Report




The report is organized as follows. In Section 2, the network models, the source
model for voice and data traffic, and the cost function together with the individual per-
formance measures for voice and data of interest are described in detail. In Section 3, the
steady state probability distribution of the voice state over the entire network is derived
and the evaluation of the probability of voice-call blocking and of data-packet queueing
is discussed. In Section 4, four approximation methods for evaluating the probability of
voice blocking are reviewed, namely, Kelly’s, knapsack, Pascal, and Mitra’'s. In Section 5,
the knapsack approximation is extended and applied to the probability of data queueing.
Subsequently, in Section 6 the Pascal approximation is extended and applied to the prob-
ability of data queueing. Following is Section 7 with the application of the knapsack and
Pascal approximation techniques to the average data packet queueing delay. In Section 8,
the Monte-Carlo Summation method is desciibed in detail for the evaluation of the prob-
abilities of voice blocking and data queueing. In Section 9, the knapsack approximation
method is applied to voice admission control problems. In Section 10, the sensitivities of
suitably defined voice and data revenue functions with respect to the link capacities, voice
loads, and data loads are evaluated via the knapsack approximation. In Section 11, the
various approximations are compared to each other and to confidence intervals generated
via the Monte-Carlo summation method; the use of the approximations in obtaining near
optimal thresholds for admission control is also described. Finally, in Section 12 several

conclusions are drawn from this study.




2. SYSTEM MODEL FOR THE JOINT VOICE ADMISSION CONTROL
AND DATA ROUTING PROBLEM

In this section we present the network and traffic models of interest in this study. A
general purpose multi-hop multi-rate-voice/data network model and a voice/data multi-
hop radio model are described first, followed by detailed models for the voice and data
traffic, and by the definition of suitable performance measures.
2.1 Network Model

In both network models FDMA (frequency division multiple-access) is the multiplexing
technique used; thus frequency channels (rather than time slots) are used to carry the
packetized traffic (voice or data). Circuit-switching is the primary mode of communication
for the network (for voice traffic), whereas packet-switching is used for data traffic.
2.1.1 General Multi-Hop Multi-Rate Network Model

The network we consider can be defined by a triplet (A, L,c) where N is a set of
nodes, L is the set of all possible directed links (each directed link ! connects two nodes
in M) and ¢ = [e1,] € L]1x|c| is the (row) vector containing the capacity (number of
channels) ¢; for each link ! € £, where |£| denotes the number of elements in set L. The
set of consecutive links directed from source node n to destination node m constitutes the
path p; we denote by P the set of all such paths; simnilarly P; denotes the set of all paths
that use link [; i.e.,

Pi={pePllep}, l€eL

and is used frequently in our analysis. The routes followed by the network traffic are
characterized by the |£| x |P| routing matrix A whose elements Ay, = 1, if the p-th path
(p € P) uses link I (1 € £), and Ay, = 0 otherwise.
2.1.2 Multi-Hop Radio Network Model

The notation is basically the same as in the previous section. However, in this model
(motivated by the work of [11]), the number of transceivers at each node is the important
resource instead of the capacity of the links of the previous section. Let T, denote the
number of transceivers at node n (n € A'). The vector of node transceivers T = [T,,n €
N1 xini replaces ¢ defined above. Moreover, instead of P; defined above, the set Py, defined

as

P.={peP|n€p}, neN
and denoting the set of all paths p intersecting at node n appears frequently in our analysis.
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2.2 Source Models
2.2.1 Multi-Hop Multi-Rate Network
We assume that the data packet and voice call arrival processes from outside the

network with originating node n and destination node m are Poisson distributed with

rates F9, and F?

nm?’

respectively. Moreover, F (F?) denotes the data (voice) flow in link
l F: (F}') denotes the data (voice) flow input from outside ihe r<twork to path p, uf is
the data service rate on the I-th link (! € £), and y; is the voice service rate on the p-th
path (p € P). The units of all these quantities (arrival and service rates) are packets per
sec.

Since the network we are considering is of middle-size or larger and the data traffic
loads are moderate to heavy, we may assume that Kleinrock’s independence assumption
holds for data. According to this approximation, which has been verified through simu-
lations for networks with data-only traffic, the data-packet serial arrival process at each
link, which includes both arrivals from outside the network, as well as packets forwarded
by upstream nodes, can be accurately approximated with a Poisson process independent
of the interaction taking piace inside the network among the various nodes (queueing and
servicing). For a multi-media network this assumption/approximation for the data traffic
has not been verified but we expect it is valid for moderate to large size networks. In
particular, we expect it to be valid for scenarios characterized by voice traffic that changes
much slower than the data traffic; because as elaborated iix Section 2.3 below, in these cases
we can condition on the state of the voice traffic and work with conditional performance
measures for the data traffic.

Two models are considered for data traffic. In the first, the packet length is exponen-
tially distributed, resulting in an M/M/c queueing model, where c is the number of servers
(channels) available for data. * The mean packet length is denoted as 1/u,, (in secs). In
the second, the packet length is a deterministic constant (1/u2,.), resulting in an M/D/c
model.

The length of voice calls is exponentially distributed with parameter u},,. Actually,
we assume that every call is composed of active and inactive (silent) periods which are

exponentially distributed with parameters a and f (in sec™!), respectively. The mean

* The number of channels available for data depends on the number of voice calls in

progress.




duration of active periods is 1/a (secs) and the mean duration of inactive periods is 1/8.
The speaker “activity fraction” is defined as ,-,;‘%, = £ and typically takes the value
0.4 for normal conversational speech (in half-duplex mode). In full-duplex mode, the value
40% is valid for the activity of each of the source and destination nodes, in the sense that
40% of the time each node talks and another 40% of the time it listens to the other side
talking. Therefore, the assigned circuit for the voice call remains occupied for 80% of the
time; an intermediate node will be in transmit mode 80% of the time, i.e., 40% of the
time transmitting in the "downstream” direction and 40% of the time transmitting in the
"upstream” direction. The quantity 8/(a + B), and its complement with respect to 1,
i.e., the speaker silence fraction a/(a + 8), enter in the key expressions for the probability
distribution of the state of voice calls in the network (see Section 3).

Under the model of the previous paragraph, the rate of active arriving calls is
F}.B/(a + B) and the rate of inactive arriving calls is FY, a/(a + B)* ; an active call
turns inactive with rate a and a silent call becomes active with rate 3.

We assume that the nortion of the channel capacity (the time-varying number of
channels ¢ in the M/M/c and M/D/c queueing models) left unused by voice calls is used
by data users. This represents a very desirable situation with the most efficient use of
channel resources but not necessarily an easy one to achieve. It is required that the status
of all voice conversations using a link is monitored and that this information is fed to the
data users that have access to that link so that they can use the channel; they must however
stop using the channel once the next talkspurt begins. If the silent period is less than a
packet length and thus the data message must be interrupted by the resumption of the
voice call, we may assume that the data message completes its packet transmission before
the voice call resumes; since the packet length is so much smaller than the typical length of
the voice conversation (or even the length of a talkspurt), the effect on the resumed voice
conversation is anticipated to be negligible.

In systems that can not take advantage of voice call silent periods, all calls are assumed
to be active throughout their duration. Under this model it is commonly accepted that the

probability of blocking remains relatively insensitive to the specific form for the probability

* Although it would be more reasonable to assume that all calls are active when they
arrive, the assumption that they may be in either the active or the silent mode simplifies

the mathematical model, while resulting in little impact on numerical results.
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distribution of the duration of voice calls [17] and it basically depends only on the mean
of call length 1/uy.,.. With this simpler model the entire analysis is also simplified and
can be obtained as a special case of the analysis for the two-state (active, inactive) voice
call model presented in the followiﬁg sections. This translation requires that we set a = 0,
B = 1, that the number of inactive calls denoted by n; is set to 0 in all equations of the

subsequent sections which involve it, and that we use the conventions 0' = 1 and 0° = 1.

It is assumed that the bandwidth of each of the channels comprising the links of the
network is equal to the data rate (in bits per sec) of the data traffic and is obtained from
the data packet arrival rate (in packets per sec). Thus the capacity c; of any link ! (I € £)
represents the number of channels and is an integer. For voice traffic we consider single-
rate and multiple-rate scenarios. In the single-rate case all voice calls have identical data
rate (denoted by r) and require the same bandwidth for transmission. In the multi-rate
case we assume that all voice sources using path p have data rate r, as in [6]. The values
of r and r;, used in the following sections are normalized with respect to the bandwidth of

a single channel. These normalized r and r, are not necessarily integers.

At this point let us clarify that by using the multi-rate traffic model of the previous
paragraph we can model multi-class voice traffic. Thus, voice traffic of several different
quality specifications (such as fully compressed, partially compressed, or uncompressed
voice, secure voice etc.) and bandwidth requirements can be modeled. Indeed, all we need
to do is to characterize the paths p € P not only by the collection of consecutive links
included in them, but, also by the (possibly) different data rates r, of voice traffic that
flow through them. In this way more than one element of P may follow the same physical
path (route) inside the network but carry different amounts of information (have different
data rates). Finally, the multi-class traffic of the above model need not be limited to
voice only; traffic types requiring higher bandwidth than voice, such as video of different
bandwidth requirements and rate variabilities [such as video telephony (teleconferencing)
with medium high variable rate or full-motion video (television) with high variable rate]

can also be dealt with in the same manner.

Since voice calls can be blocked but can not tolerate delay whereas data can be delayed,
we assume that voice has priority over data. Data arrivals are routed in a packet-switching
manner so that the input data flow in each node is separated into several subflows and

each subflow takes a different path to its destination. Each voice call, after being admitted,
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is allocated a channel along a fixed multihop path to its destination in a virtual circuit
manner, that is, once the path is chosen, the call uses only this path to transmit until the
call is finished.

On the other hand, data messages (following a M/D/c} traffic model) can use only
the residual capacity cj, that is the portion of the link capacity ¢; that remains unused
after t-e active voice calls on paths employing link ! have occupied the necessary number
of ¢’ .nnels. The appropriate expression for the data link capacity c is provided in Section
2.4.1 below.

An alternative model that always guarantees that a portion of the capacity of each
link is allocated to data communications is also considered in this report [refer to equation
(7.17) of Section 7.3].

2.2.2 Single-Rate Multi-Hop Radio Network

The model for voice calls for the radio model of Section 2.1.2 is similar to the one
described above, except that we address only the case in which a single-rate model for all
calls is adopted, that is,

rp=r=1 forallpe P.

Also data messages use the same data rate as voice calls.

For the data traffic we use an M/D/c} model where the number of data messages that
can be transmitted simultaneously over link | = (n,m) (connecting nodes n and m) is
limited by the residual capacity c; of the link; that is, the remaining number of channels
once the active voice calls have occupied the necessary transceivers at nodes n and m. The
appropriate expression for the residual capacity is given in Section 2.4.2. Data packets are
queued at buffers available at the nodes. The above M/D/c model assumption can not be
fully justified here as it was done for the general wired network of Section 2.2.1., because of
the need to coordinate the transceivers at the two nodes of each link. A radio network will
most probably use some more complicated access protocol for the data traffic, resulting in
arrivals to intermediate data links (or nodes) which are not Poisson. Therefore Kleinrock’s
independence assumption is less likely to be valid in a radio environment. However, the
simple M/D/c model enables us to evaluate the accuracy of the approximations described
in this report without having to evaluate complicated protocols for the data traffic. For
different protocols than the M/D/c, certain conditional probabilities pertaining to data

behavior [which are conditioned on the number of ongoing (active) voice calls] will have
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to be used instead of the M/D/c formulas; except for this change the basic steps of our
approach are applicable to these cases as well. A more detailed discussion of this issue is
provided at the end of Section 2.4.2.

An alternative model that always guarantees that some transceivers (and thus some
link capacity) are dedicated to data traffic is also considered in Section 7.3. [refer to
equations (7.18)-(7.19)].

2.3 Cost Function / Performance Measures

The performance measures of interest to our study are:

(i) the probability of blocking of calls B, along each path p (p € P), as well as its

average over the voice arrival process at all paths, B,

(ii) the probability of queuing data Q; at each link ! (I € £), as well as its average

over the data arrival process at all links, Q,

(1ii) and the average queueing delay of data W; at each link ! (I € £), as well as its

average over the data arrival process at all links, W.

The first of these quantities B, is defined as the probability that an arriving call of
class p (i.e., destined to follow voice path p) finds all available channels busy at one or
more links on path p, and is therefore blocked. A precise mathematical definition of B, is
provided by equation (3.12b) of Section 3 as the quotient of two normalization constants.
The quantity Q; is the probability that a data packet arriving at link finds all channels of
that link busy and is queued, and W is the average delay at the queue of link ! experienced
by a typical data packet. Since W; provides only the average value of the delay and the
distribution ~f the delay is very difficult to obtain, we also provide the probability of
queueing Q; {(which is easier to obtain) in order to supplement the information given by
W, about queueirg at link [. Links are considered in isolation here because of Kleinrock’s
independence assumption, which we assume is valid for the data traffic; this is discussed
in more detail below.

The aforementioned average quantities B, Q, and W are defined by

_ B

B= _ZLG_”_p_"tf., (2.1a)
Zrer Py
Yiec Pl

Q=tec i (2.1b)

Zlec P
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and

Liec il
W = m, (2.1C)

respectively, where the utilization factors for voice and data traffic (o, and pt), are defined
in equations (2.7) and (2.8) later in this section.

The cost function C of interest to problems of joint admission control and data routing
(or joint voice and data routing) consists of weighted sums of B and Q or of B and W',
that is,

or

C' = K]B + KgW (2.2b)

where K; + K; = 1 and K;,K> > 0. Therefore, in order to perform any optimization
involving the above cost functions we need to have expressions (closed-form or accurate
approximations) available for the probability of voice blocking (B), the probability of data
queueing (@), and the average queueing delay of data (W). Since such computations are
typically invoked many times during optimization the evaluation of the exact expressions
(or the approximations) should be computationally efficient, otherwise optimization is not
computationally feasible.

Let us revisit now B,, the performance measure for the voice calls. Since voice calls
have preemptive priority over data, the performance of voice calls is not affected by the
data; consequently, the well-know:: product-form solution of the probability of blocking
([3], [4]) is valid. The difficulty in evaluating B, of course lies in the computational
complexity of the expression for the probability of blocking. Our approach here is to
consider approximations to the probability of blocking that are asymptotically accurate
under specific limiting regimes. Although B, is of greatest interest in most applications,
two additional voice blocking probabilities are also used: B, (z2pproximations to it are
denoted by Ly, in Section 4), the probability that the capacit; of link [ along the path of
a voice call of class p (p € P) is not available [whose precise mathematical definition is
given in (3.12a) as the quotient of two normaiizasion constants|; and By, the probability
of blocking of voice calls due to unavailability of the capacity of link ! (I € £). Both B,
and B; are approximated with the help of B),; details are provided in Section 4.
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Next consider Q; and W), the performance measures for data. Since the states of data
at different links are dependent—for example, for all links on the path of a voice call the
data states depend on the state of calls of the path and as such are mutually dependent—it
1s not possible to consider Q; for link ! without the coupling with the other links. To obtain
Q: (I € £) we have to consider the state of all links at a particular time, which is very
difficult when the output data process of each link is not Poisson.

To facilitate the analysis of data we need an additional assumption (beyond Kleinrock’s
independence assumption). Since the state of voice calls changes much slower than the data
states, we assume that data can reach steady-state during the sojourn time of calls within
a particular state. The validity of this assumption has not been verified via simulation; in
the future, we plan to check the accuracy of this approximation via simulation, at least
for small-size networks with voice and data traffic. However, a similar assumption has
been made in [14] for the analysis of Voice/Data (VD) Interleaved-Frame Fixed-Length
(IFFL) protocols in the context of movable-boundary channel-access schemes for integrated
voice/data networks. It was shown that this assumption is pessimistic at moderate to
high throughput levels. VD-IFFL protocols work with time-slotted networks, and use
reservations for the voice traffic and IFFL (which combines reservation with contention)
for the data traffic. Under the above assumption and the aforementioned Kleinrock’s
assumption (discussed in detail in Section 2.2.1) we can examine each link in isolation and
consider M/M/¢' or M/D/c' models for the data conditioned on the state of the voice

taking on a particular value.
2.4 Basic Notation

The notation introduced here is used in all subsequent sections. However, additional
notation is introduced in each section as necessary. In this section attaching an “a” or a
“b” to the number of an equation respectively signifies the single-rate or the multi-rate

W n

general (not necessarily radio) network scenarios; attaching a “c” signifies a single-rate

radio network with transceivers at the nodes.
2.4.1 General Multi-Rate Multi-Hop Network
The system state is described by a triplet that contains global (networkwide) infor-

mation in the voice state, along with local information on the data state at one particular

link.

Denote the state as (N?, N°,n¢), where
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wve

: ny = number of calls taking path p in the system, p € P}, xp|

: ny = number of calls in silent phase out of n; calls, p € P];x|p|

.e

nf £ number of data messages at link [

Thus the number of ongoing voice calls along the paths (circuits) and the number of
data messages along the links are the network states of interest to this report. System
performance must be evaluated for each of the £ links in the network. Links can be
considered in isolation because of Kleinrock’s interlink independence assumption (discussed
at the beginning of Section 2.2.1) and the additional assumption about the state of voice
varying much slower than that of data (cited at the end of Section 2.3) which decouples the
variations of data traffic from voice traffic and gives meaning to Kleinrock’s assumption
for the conditional data traffic (conditioned on the voice state). We reiterate here that
it is not necessary for the validity of our approach to consider the data links in isolation;
we do it because it simplifies the computations (at least with respect to the data part)
and allows us to test our approximations for performance measures (for data traffic) which
are available in closed form (when conditioned on the voice state). Our approach can be
extended to apply to performance measures (for data) which reflect the interaction between
several data links; however, this requires additional computational complexity. This issue
is discussed further in Section 2.4.2.

Note that |P| denotes the number of the elements in set P, i.e., it is the number of
call types and thus the number of paths, N” and N* are |P|-dimensional vectors, and n{

is a scalar. Denote the set of all possible (N", N*,n{) for the single-rate case as £, where

= {(ﬂ",ﬂ’,n}‘) 0<nt <nt0<nS<c/rpeP; Y ni<afr, e c} (2.3a)
PEP:

where ¢, = min {c;, | € p} denotes the capacity of path p, and P, was defined in Section
2.1.1. The terms c,/r and ¢;/r in (2.3a) represent the actual numbers of voice channels in
¢p and c;; recall that the link capacities c; are normalized to the data traffic rate and thus
represent the maximum number of data channels, and division by r (the voice data rate)
is required in order to provide the corresponding number of voice channels.

Actually, the intuitive constraint 0 < nj < cp/r for p € P, which guarantees that the
number of calls on path p does not exceed the (voice) capacity of path p defined as ¢, =
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min{ci,! € p}, is satisfied whenever the more powerful constraint }__.p n; < caifr, 1€ L
is met. Therefore, the necessary (with the minimum number of constraints) form of § is

Qs (.M",E‘,nf)lo <np<nypeP; Y np<alr, leLy. (2.3a")
PEP:
Note that in the multi-rate case {2 becomes
Qs {(E.",_Ii',n‘,’)IO <n) <nY0<rpny <cpp€ P Z rpny <ci, L€ L} . (2.3b)
PEP:

The following additional notation is used in subsequent sections. In the single-rate

case
S PR (2.4a)
PEP:
nt= Y n (2.50)
PEP;

denote the total number of calls and “silent” calls, respectively, that use link [; both n}

and n; are clearly integers and satisfy the inequalities
0<ni<n/<ea.

The corresponding definitions in the multi-rate case are

KEY rpny (2.4b)
PEP:

HEY rpnl (2.5b)
PEP

where k] and k{ now denote the total number of channels occupied by all calls and by the

inactive (silent) calls, respectively, on link /; clearly these must satisfy
0<ki<ki!<a.

Since, the voice data rates r, may not be integers, k{ and k; may assume non-integer

values as well.




Moreover, n{ (the number of data messages at link !) follows an M/D/c} model with
residual data capacity
¢ =c1— (n] —nj) (2.6a)
for the model of (2.3a) or
¢t =cr— (ki — ki) (2.6b)

for the model of (2.3b).
Finally, since F and u appear in the form p = F/pu in all the formulas derived hereafter,

we can simply use the variable

py = Fg luy (2.7
pi = F{/uf (2.8)
=20 (2.9)
PEP,
Prm = Fam/tnm (2.10)
P:m = F:m/“:m (2'11)
and
Prm= D P . (2.12)
pE‘an

2.4.2 Single-Rate Multi-Hop Radio Network

In this model, the link capacities ¢; (I € £) are replaced by the number of transceivers
at node n, T, (n € N). The key sets of paths P; (I € L) are replaced by the sets P,, n € N.
Now the number of calls nj of class p (along path p, p € Py) satisfies the constraints

Y nl<Ta neN (2.3¢)

pE'Pn

instead of (2.3a) or (2.3b), and the residual data capacity of link ! = (n,m) connecting

nodes n and m is

< =min{T,. - Z(n;’,—n;),Tm - Z (n;-n;)} ,lel,nmeN (2.6¢)

PEPn PEPm
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This formulation implicitly assumes that all transceivers at nodes n and m that are not
currently supporting active voice calls are available to support data traffic between nodes
n and m. Thus it neglects the possibility of data traffic between either of these nodes and
their other neighbors. Therefore, Eq. (2.6¢) should be accepted with reservation and only
as representative of the simplest data model that we can handle with our approach.

In a more realistic scenario the performance measure for the data operating under
a particular protocol over link | = (n,m) (connecting nodes n and m) depends not only
the T, and T of these nodes and the total number of active voice calls 3 _cp (np —np)
and }° p (np —ny) but also on the corresponding values of these quantities for all the
neighbors of the nodes n and m. Thus the residual capacity | = (n,m) depends on the
way in which the unused transceivers at nodes n and m are allocated to support data links
with their other neighbors as well.

To determine this residual capacity one must very carefully enumerate all possible
pairs of transceivers that are occupied by voice traffic for each voice state, and then use
a (not yet defined) protocol to determine how the unused transceivers are to be allocated
to support data traffic between the pairs of users. Typically, a transceiver may be paired
with several of its neighbors (one at a time) to form a link-activation schedule, in which
case the data-traffic queueing model will have to be revised to reflect the fact that the
server is not always available (as in a queueing system with vacations). As long as this
allocation depends only on the voice state (i.e., not on the data queue sizes at each node),
our formulation that addresses the data state at each link in isolation remains valid.

Once this allocation is made, the performance measure of interest can be thought as
a functional which depends on several terms of the form ZPE'Pn(n; — n;) where 7 is an
immediate neighbor of n or m. If the number of neighbors of the nodes n and m is small
then we can use the approach of Section 9.2 (based on additional conditioning) to average
the performance measure for data with respect to the steady state distribution of the voice
state vector. If the number of neighbors of n and m is larger, we may use the approach of
Section 9.3 (based on fictitious links) to carry out this averaging.

In this report the M/D/c model of (2.6¢) is sufficient for establishing the accuracy
and computational efficiency of the knapsack and Pascal approximation techniques for a
first application to integrated voice/data radio networks. In the future we will apply these

techniques to more complicated data protocols.
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3. STEADY-STATE DISTRIBUTION FOR THE SYSTEM STATE
In this section we provide the steady-state distribution of the state of the network,
that is of (N", N*, n¢), for the single-rate and multi-rate cases under the assumption that

the the state of voice calls changes much slower than the state of data.

Proposition 3.1. When the state of voice calls changes much slower than the data-packet
state, the steady state probability of (N¥, N*,n¢) can be closely approximated by

P(ﬂv,ﬂ.,ﬂf) = P(!!”,]_V..) : P(n“ﬂv’!.v_‘) (31)

where

(a) the steady state probability of the voice is

(pv)ﬂ; g";ﬁ";—n;
LA : ’ 3.2
(NN G g,n"(n;—n;)! (a + )" (3.2)
and
(pv)n; Y
G = E H n® : 8 nv (33)
(NY,N*)EN® pEP npi(ny —n2) (o + /)"
for

Sn,,p€P;0<nf <c, IGC} single — rate case

o _ { {0
{@r,x)

0=m,
0<nl<n),peP;0< ki <c, IEC} multi — rate case

(3.4)

(b) the conditional steady state probability of the data for an M/M/c model is

nd
Pogp—,':g.—'» n;i < <
P(nf|N®,N*) = - 3.5
(nl I-—- A ) P (ﬂI‘J ,‘"c;c ’ nld S c; ( )
A
where
, -1
-1 d\n d\ St

(of) (ef) (3.6)

oy
i
.:- Ty
+
-ﬁ\
N
H —
|
N
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py = Fl/u;, p} = F{/u{, and

= ca—nj+nj 21 single — rate case 3.7
'“le—kf+k 21 multi - rate case 37

Note that
P(n{ = co[N®,N*) =1 when ¢, =0, or ¢, >1but pf/c}>1 (3.8)

i.e., the data-packet queue becomes infinite when there is no residual capacity for data or
when the offered data load of the link exceeds the residual link capacity.

(c) the conditional steady state probability of the data for an M/D/c model can not be
obtained in closed form but can be approximated with arbitrary accuracy using Tijms’
iterative algorithm (see [13]) on a M/D/c| system (recall ¢} = c; — k} + k{); the procedure
is sketched in Appendix B.

Proof: The proof of the main result (a) is provided in Appendix A.

Comments:

1. Note that the expression for P(N°,N°) in Eq. (3.2) is a modified version of the
traditional product form for the steady state probability of the voice state. In the more
frequently studied case, in which the occurrence of silent periods is not addressed, we have
(see for example [4] or [6])

1 q ()™
P == [ =55 (3.9)
pEP P
where
(pp)"?
G= ) 2 (3.10)
Nveqvper P
is the normalization constant associated with the state space
Qv={ﬂ" OSn;’,pE'P;OSZr,n;’,Scz, lEL}. (3.11)
PEP

The reason that we need P(N",N*) instead of the usual P(N”) is that we assume that
silence periods of voice calls can be detected and the data traffic can use the released

bandwidth, thus increasing the overall efficiency of the resource allocation.
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2. Under the M/M/c data model and a single-rate network, (nf|N°, N’) corresponds
to an M/M/c; — n} + n{ system when ¢ = ¢; — n} + n] > 1 and pf/c} < 1, whereas
Pr(nf = oo|N",N*) = 1 when ¢, = 0 or ¢} > 1 but pf/c; > 1. The same is valid for
(n¢|N*,N*) under an M/D/c; —n} + n! data model. For the multi-rate case we only need
to replace n; and nj by k; and &} in the above comments.

3. The probability of voice blocking at link ! of a call of class p (Bi,) can be expressed
({4)-[6]) as the ratio of two normalization constants (also termed partition functions) G

defined in (3.10); specifically, the probability that such blocking does not occur is

G(clﬁczs°"acl—lacl _rpvcl+ls"'scﬁ)

1- By, =
14
G(c1 62, ,€c1=1 €1, €141, -, )

(3.12a)

where the normalization constants G of (3.10) are denoted as functions of the 1 x ||
row vector of link capacities ¢. The right-hand side of (3.12a) represents the steady-
state probability of the vector of the number of voice calls over all paths of the network,
when a single (voice) channel is removed from link ! (and thus its capacity decreases
to ¢; — rp). This is indeed the probability of no blocking because a new arriving call
(requiring bandwidth rp) can be accommodated by the link capacity. The evaluation of
By, in (3.12a) requires the computation of the normalization constant G of (3.10). This
may be a very computationally demanding task even for moderate size networks, because
of the large number of points in the state space over which the summation is performed.
Therefore, accurate and computationally efficient approximations are necessary. Several
such approximations have been developed under different conditions (limiting regimes) (see
[4]-[10]). In Section 4 we review some of them and select to work with two: the knapsack
and the Pascal approximations, which we extend and modify (in Sections 5 and 6) so that
they apply to performance measures pertaining to the data such as the average probability
of queueing and the queueing delay of data at the links of the network.

Finally, B,, the blocking probability for a call of type p (» € P, [4]-[6]), can be

evaluated from the expression

G(c—rp4;)

=5 =50

(3.12b)

where ¢ was defined above and _f_lz is the transpose of the p-th column (a |£] x 1 vector)

routing matrix A defined at the beginning of Section 2. Equation (3.12b) is similar to that
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in (3.12a) with one major difference; in (3.12a) only the capacity of link ! has been reduced
by r, (corresponding to availability of channel capacity along link [ for an additional voice
call) in the argument of the normalization constant G in the numerator; in (3.12b) the
capacities of all links ! used by path p (I € p) have been reduced by r, (corresponding to
availability of channel capacity along all links ! along path p for an additional voice call).
The expression in (3.12b) requires about the same level of computational complexity as
that of (3.12a); this becomes prohibitive for even moderate size networks. However, the
approximations obtained for By, in Section 4 can also be used (with proper modification)
for B, as well.

4. The probability of data queueing at link ! is given by

Qi = Pr(data queued in link )
= Pr(c; — n} + n} <nf)
=1— Pr(ci — n} +n! >nd where (n},n!) # (c1,0))

cp—-1

=1- Y | S Iiny.ng) # (e, 0)P(nfINY, N*)| P(N®,N*) (3.13)
v,NYERY | ni=0

for a single-rate system; for a multi-rate system we must only replace the n; and n;
by k; and ki defined above, respectively, in the above equation; I denotes the indicator
function taking value 1 when its argument is true and 0 if it is false. Consequently,
Qi can be evaluated directly from the conditional steady state probabilities of the data
P(n?|N",N°*) and the steady state probability of the voice P(N*,N*). However, the
computational complexity of the summation involved in the definition of P(N"¥, N*) [see
(a) of Proposition 3.1] coupled with the additional summation necessary for obtaining Q:
becomes prohibitive for large |P|. This computation is carried out through computationally
efficient approximations in Sections 5 and 6.

5. The queueing delay of data at link ! can also be evaluated (actually approximated)
using the basic results of this section. The details are provided in Section 7.

6. The results of this section were derived for a general multi-rate multi-hop wired network;
they are valid for the single-rate multi-hop radio network of Sections 2.1.2 and 2.2.2 after
we replace ¢; (I € £) with T,, (n € N), P; with P,,, and set r, =1 for all p € P.
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4. REDUCED-LOAD APPROXIMATIONS FOR THE VOICE BLOCKING
PROBABILITY

As discussed in the comments following Proposition 3.1 in Section 3, the evaluation of
closed form expressions for the probability of voice blocking at link ! or along path p require
substantial computer resources and time. In particular, when these expressions must be
computed numerous times (i.e., for different control policies), as is the case in a variety of
optimization problems including admission control and routing, it becomes imperative that
computationally efficient approximations are developed that exhibit satisfactory accuracy

and allow the speedy evaluation of these quantities.

In this section we describe a number of approximations that can be used to evaluate
the probability of voice blocking with computational complexity considerably lower than
that of the brute force approach. These are termed “reduced-load” approximations, and
have been applied to multi-rate loss networks by a number of researchers [4]-[10] with
very encouraging results. The term reduced-load pertains to a reduced- (or thinned-) load
approximation of the traffic from all paths using a particular link, because of traffic blocked
at other links, and is discussed in detail in Section 4.2. The approximations are known
to be asymptotically correct in the limiting regime characterized by heavy offered traffic
loads and large link capacities. These approximations had not been applied to data traffic

analysis before our work in this report.

In the context of the advancement of this approximation theory and its applications
to practical multi-media network problems, our main contribution elaborated upon in this
report is fourfold. First, we establish that two of these approximation techniques (knapsack
and Pascal) exhibit satisfactory accuracy even when applied to situations different from
those of the limiting regime; we actually show that they maintain excellent accuracy over
the entire range of useful traffic scenarios and architectures. Second, we show how to use
these approximations to evaluate performance measures for data (such as the probability of
queueing for data and the average queueing delay for data) in networks with multi-media
traffic. Third, we extend the application of these approximations to radio network models
that are distinctly different from the multi-media networks of [4}-[10], which use optical
fiber or copper as the transmission medium. Fourth, we apply these techniques to systems
with admission control schemes and to the subsequent optimization of the thresholds or

other control parameters involved.
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The purpose of reviewing these approximation techniques here is twofold. First, as
we show in Section 11 through comparisons with results based on the exact expressions
and the Monte-Carlo summation method, these techniques have satisfactory accuracy and
we can use them to approximate the average voice blocking probability of links or
paths (routes) for radio networks of interest to our project. Second, we need to introduce,
motivate, and describe the fundamental principles of these techniques before we extend
and modify them in order to approximate the average probabilities of queueing and
the average waiting delays of data at the links of the network. These extensions are
described in detail in Sections 5, 6, and 7, and enable us to approximate accurately and
with reasonable computational complexity important performance measures for the data

in multi-media networks.

In this section we describe the principle of four of these approximation techniques:
Kelly’s, Knapsack, Pascal, and Mitra’s approximations. We limited our consideration to
these four for two reasons. First, these four are the ones that have been applied most
successfully to a variety of networking problems with very satisfactory results. Second, we
were able to extend and modify two of those (the knapsack and Pascal approximations) to
accommodate performance measures for the data (such as average probability of queueing
and average queueing delay). Kelly’s approximation ([4]-[5]) was included in this review
because it is a useful starting point for introducing the notation and the principle of the
reduced load approximations. Mitra’s approximation was included because we considered it
early during the course of this work, we extended its application to more general topologies
than the tree network of the original paper [10], and we extended and modified it so that it
applies also to the probability of queueing and the queueing delay of data. Unfortunately,
as we found out through comparisons with the exact expressions and the Monte-Carlo
summation method, this approximation is accurate (actually converges) only under rather
restrictive assumptions about the loads of the links and thus it is not presented in greater

detail in this work.
4.1 Kelly’s Approximation

Consider a network supporting multi-rate traffic (say with data rate r, for path
p € P). Denote by L; the approximate probability that “all circuits are busy on the
link I”, or equivalently the probability of blocking for link [ (I € £). Under the assump-

tion ([4)-[5]) that these events occur independently from link to link, class p connections
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(voice calls using path p) arrive to link ! according to a Poisson process with offered load
Tpi_ [leep,exi(1— Le)™ and thus the total arriving traffic at link ! (belonging to all classes
p € P) is also Poisson with aggregate load

Y rep I a-Lo~. (4.1)

PEP; tep, b1

where the expression [],¢, /(1 — L¢)™ represents the “thinning” or “reduced load” effect
associated with the blockage of calls of type p at the other links along the path. Hence,

under the link independence assumption, we must have

Li=E|c; Y mey [[ O-Lo7|, 1€k (4.2)
pEP Lep t#1
where
Elei o] = w22 — (4.3)
, Z;:O pn/n! .

is the Erlang loss formula (see [1] or [4]). In the above notation we used L, instead of B, to
distinguish between the exact value of the voice blocking probability and the reduced-load
approximation L;. If rp = r for all p € P, then (4.2) becomes the standard reduced load
approximation for single-rate loss networks.

Repeated substitutions are often used for finding a solution (L;, L2,---,L|c)) to the
fixed-point equation (4.2). Although oscillation can occur in (4.2), repeated substitutions
typically converge to a fixed point for networks of practical interest. One of the features
of this approximation scheme is that (4.2) has a unique fixed-point solution. The proof of
uniqueness relies on the monotonicity properties of the Erlang loss formula; unfortunately,
these properties are not possessed by the knapsack and Pascal approximation schemes
discussed below.

Once a fixed point is found, the probability B, that a call is blocked along path p (or
equivalently a class-p connection is blocked as we saw in the discussion of Section 2.2) can

be approximated by

B,=1~[J-Ly~, (4.4)
lep

a formula that invokes again the link independence assumption.
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The above approximation is asymptotically accurate (correct) under the following
limiting regime: the ratio of offered load and of the number of channels in each link is held
fixed while the individual values of these two quantities become asymptotically large.

4.2 Knapsack Approximation

For this approximation scheme as well as the one of the following section we work first
with a single-link multi-rate system and then extend the result to multi-link networks.

This technique is termed the knapsack approximation because the single-link multi-
rate system corresponds to a stochastic knapsack resembling the knapsack model in combi-
natorial optimization. The term stochastic knapsack is motivated by the fact that typically
the system modeled resembles a knapsack to which items (states) are added or from which
items are taken out according to a probability distribution. This approximation was suc-
cessfully applied to circuit-switching problems by Ross [6]-[9].

Consider a single-link system with link capacity ¢;, which supports classes p € P,
(or equivalently several paths p use link !) with data rates r, and offered loads p,. The
probability that a class-p connection is blocked (or a voice call along path p is blocked),
when arriving to the stochastic knapsack, is given by

Y nzo’ w(n)

Kipple; pl, g€ Pij=1- , PEP (4.5)
ol Per 4 ] Zf.;o w(n)
where

w(n) = 1 Z repqw(n—rg), n=12...,q (4.6a)

n
qEP:
with initial condition
w(0) = 1. (4.6b)

The intuitive explanation of (4.5) is that 1 — K, represents the probability of no blocking,
i.e., the probability that up to ¢; — rp, (I € p) voice calls are in the system (inside the
stochastic knapsack) so that an arriving call (requiring r, channels) can be accommodated
by the capacity of link  without being blocked. In (4.5) w(n) provides the probability that
n voice calls are currently in the system, and the recursion (4.6a) for the update of w(n)
is typical of stochastic knapsack system models.

For a multi-rate loss network with multiple links, we denote by L;, the approximate

probability that “less than r, channels are available on link {” (probability of voice blocking

26




on link [ along path p); L, is an approximation to the quantity B, defined by (3.12a)
in Section 3. As in Kelly’s approximation, we again assume here that these events occur
independently from link to link. This approximation decouples the blocking phenomena
on different links and enables the evaluation of an approximate expression for the amount
of unblocked traffic traveling through the network and finally for the desired blocking
probability. Under the interlink blocking independence assumption, class-q connections

arrive to link ! according to a Poisson process with offered load

ey I (1-Ley) (4.7)

Leq.t#l

This load is termed thinned or reduced, because it is smaller than the corresponding load
py (from circuit p) of the link [ (for ! € ¢), when considered in isolation, in a manner that
reflects the effect of blocking at the other links in the network through the approximate
probabilities Ly,. This aspect of the approach gives the name reduced-load approxima-
tion to the knapsack approximation method (as well as the Pascal approximation method

described in Section 4.3). Consequently, under the link independence assumption, we have

Ly =EKyplesp; [] (1-Leg) g€P), peP, leL. (4.8)
teg. t#l

Equations (4.8) define a coutinuous mapping from the compact convex set
[0, 1]!Pu1XIPalxx|Pie)l jnto itself; thus, by the Brouwer fixed-point theorem, there exists
a solution (Lip, p € Pi, 1 =1,2,---,|L]) to (4.8). The method of successive approx-
imations (i.e., repeated substitutions) can be employed to find such a solution. Once a
solution to (4.8) has been obtained, the probability of blocking a class-p connection can

be approximated by

B, =1-[](1-Ly) (4.9)
lep

and the probability of blocking any voice call on link ! can be approximated by

B = }: Ly, (4.10)

PEP:

In contrast to the fixed-point equation (4.2) the solution to (4.8) of the knapsack ap-

proximation is not necessarily unique. This is because the knapsack equations (4.5)-(4.6)
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do not have the nice monotonicity properties of the Erlang formula (4.3). Multiple solu-
tions to the fixed-point equations of (4.8) can alert the designer of potential instabilities
in the network. Ross [6] provides an example where the network alternates between long
periods of carrying only narrowband connections and long periods of carrying only wide-
band connections. Kelly’s approximation does not expose this instability, since it always
gives rise to a unique fixed point. But the knapsack approximation gives on. solution with
almost 100% blocking of narrowband connections and another solution with almost 100%
blocking of wideband calls, which reflects the instability that actually exists in the system.

The knapsack approximation is shown in [6] and [8] to be asymptotically correct un-
der the same limiting regime as Kelly’s approximation (see end of Section 4.1). However,
comparison of the accuracies of the two approximations, the exact expressions, and the
Monte-Carlo summation method indicate that the knapsack approximation maintains sat-
isfactory accuracy even far outside the limiting regime.
4.3 Pascal Approximation

The Pascal approximation technique is based on the use of a birth-death process with
Pascal distribution to model the voice state in the system. This was applied to circuit-
switched problems by Ross [6}-[9].

We again address first the case of a single link. Consider a birth-death process on
the state space 0,1,:--,¢;, which, when in state n, has a death rate of n and a birth
rate of €2/0? + n(1 ~ €/0?), where € and o2 are given positive numbers. Let g(r), for

n=0,1,---,c, be the equilibrium probability of being in state n, that is, g(n) satisfies

ng(n) = [ /o? + (n = 1)(1 — ¢/o?)jg(n—1), for n=1,2,---,¢ (4.11a)
where
Z g(n)=1. (4.12a)
n=0
Denote
Pi(cri0%) = 2 gn)=1- Z q(n). (4.13a)
n=ci—rp+1 n=0

The right-hand side of (4.13a) represents the probability that the birth-death process n
is in a state > ¢; — rp. This corresponds to blocking since there is no room left in the

capacity of link / for accommodating any arriving voice call (which requires r, channels).
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When ¢; = o0, g(n) has the Pascal distribution, and the means and variance of the birth-
death process are given by € and o2, respectively (see [6]). The Pascal approximation uses
the same approach but for finite values of ¢; necessitating the solution of Eq. (4.11a), as
described below.

If instead of ¢(n) we use the normalized version

g'(n) = g(n)/q(0)

the recursion of (4.11a) becomes

1
d(n)= ;[62/02 +(n=1)(1-¢/d®)¢'(n-1), for n=1,2,---,¢; (4.11b)
with initial condition
q'(0)=1. (4.12b)

This is easier to evaluate [it does not require knowledge of ¢(0)], and results in

1] -1
[Z q'(n)J = ¢(0).

n=0

Using this result to modify (4.13a) yields

c,—r, 1]
=0’ ¢'(n)
Pi(ci;608) =1~ —2-:—'10—-. (4.13b)
i E:::O q'(n’)
Next consider the stochastic knapsack model, discussed in the previous subsection, for
the isolated link . When ¢; = oo, the mean and variance of the number of busy circuits
[under the knapsack approximation for the steady-state voice distribution] are obtained

after some manipulations by

€6 = Z Ty [z nP(ng = n)] = Z TqPq (4.14)

q€EP, n=0 qEP;

and

o} = Z r: [Z(n - p;’)zP(n;’ = n)] = Z rzp'q’ (4.15)

qEP; n=0 qgEP,;
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respectively. Thus, the infinite-capacity stochastic knapsack gives the same mean and
variance for the number of busy circuits as the birth-death process with parameters ¢ = ¢
and 02 = o}. It is, therefore, natural to approximate the probability of blocking a class-
p connection arriving to the stochastic knapsack with finite capacity (i.e., ¢ < oo) by
Ppler; €150}

For the multi-rate network with multiple links we use the same notation as in Section
4.2 and make again the link independence assumption, so that class-q connections arrive to
link ! according to a Poisson process with the rate given by (4.7). By invoking the Pascal
approximation, we obtain the probability that the capacity of link [/ is not available for a

call of class p as

Lip= Py |cp; Z TePq H (1= Leg); Z ripo, H (1—-Lg)|, g€P, l€L
q€EP, L€q, 81 qEP,; £€q,t3#1

(4.16)
where the function Pyp( --- , -+ , --- ) is given by (4.13) and we use L, to denote the
approximation to the probability of blocking of voice path p on link ! for the Pascal method;
the same quantity for the knapsack method was denoted by L;p. In general Lip # Lip;
however, in the important single-rate case (r, = 1 for all p € P), we show in Appendix F
that Ly, = Li, (p € P1,1 € L).

As with the knapsack approximation of Section 4.2, there exists a nonunique solution
to the fixed point equation (4.16). Once having found such a solution, B,, the probability
of blocking a class-p connection (or a voice call along path p) is approximated by (4.9);
similarly, B;, the probability of blocking any voice call on link [ is approximated by (4.10).

The computational complexity and the accuracy of the Pascal approximation are very
comparable with those of the knapsack approximation. Moreover, the Pascal approxima-
tion technique was shown in [6] to be asymptotically accurate (correct) under the same
limiting regime as Kelly’s and the knapsack approximations. Through our comparisons it
has also been established that the Pascal approximation is accurate over a broader range
of load parameters than Kelly’s approximation.

4.4 Mitra’s Approximation

The approximation technique suggested by Mitra [10] relies on a Taylor series expan-

sion of the normalization constant of (3.10). Although it has the advantage that we can

control its accuracy by increasing the number of terms in the Taylor series expansion, it
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has the disadvantage of converging only for a rather limited number of scenarios. Actually,
we were not initially aware of that disadvantage, since [10] remains silent about it.

In [10], the approximation technique was applied to a tree network. However, in that
paper there was not any stated constraint on the traffic loads and number of channels (of
the circuits), without which convergence was unattainable. We simulated Mitra’s results
and found out that he only presented in his paper the scenarios for which convergence
was attained. By increasing the loads we found out that the convergence was no longer
guaranteed.

Consequently, although we were able to extend the applicability of M.tra’s approxi-
mation method (a) to more general topologies than trees, (b) from single-rate networks to
multi-rate networks, and (c) to the probability of data queueing (besides the probability
of voice blocking), the severely limited range of convergence precludes the application of
this method in most cases. Since all our simulation results using this method showed poor
accuracy (except for the results presented in Mitra’s paper about the tree network and for
only the traffic loads reported there), we opted not to present the mathematical details of
the application of this approximation method even for our novel work (i.e., the extensions
to general topologies and to multi-rate networks).

4.5 Knapsack and Pascal Approximations for the Radio Network Model of
Section 2.2

In Appendix G we show that for networks with single-rate traffic the knapsack and
Pascal methods provide identical approximations to the probabilities of voice blocking and
data queueing. Consequently for the radio model of Sections 2.1.2 and 2.2.2, which is
characterized by r, = 1 for all paths p € P, we use only the knapsack approximation in
deriving the numerical results for the voice blocking probability in Section 12.

The application of the knapsack approximation method to the evaluation of the prob-

modification of the approach described in detail in Section 4.2. In particular, we replace [
(links) by n (nodes), £ by N, P; (set of paths using link !) by P, (set of paths intersecting
at node n), ¢; (link capacities) by T, (number of transceivers at nodes), and r, = 1 (for

all p € P). We are then able to use the results of subsection 4.3 directly.
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5. KNAPSACK APPROXIMATION TO THE PROBABILITY OF DATA
QUEUEING

In this section we describe in detail the application of the knapsack approximation
to the probability of data queueing. This development appears for the first time in this
report. The approximation is first developed for general multi-rate networks in Section 5.1
and then modified in Section 5.2 to be suitable for the multi-hop radio network of Sections
2.1.2 and 2.2.2.

5.1 General Multi-Hop Multi-Rate Networks

The key idea behind the application of the knapsack approximation to the probability
of data queueing is to use the technique described in Section 4.2 to approximate the external
sum in (3.13), while treating the internal sum (the sum with respect to nf) as a single
entity for given values of (N”, N*) and use Proposition 3.1. This approach is described in
the following in detail.

As for the case of voice traffic (Section 4.2) in order to derive the knapsack approxi-
mation to the probability of data queueing in link I, Qi, we first consider the probability of
queueing for a single-link multi-rate system. As we saw in the comments after Proposition
3.1 of Section 3, the probability of data queueing for link ! can be expressed as in (3.13)
which we may modify as

c;—-1
Q=1- 3 [Z I{(n},nf) # (1, O)P(nf N7, N*)| P(N",N*)
(NY,N*)ER, |nf=0
a &k -1
=1-)" ) Ii(k,;m) # (c1,0)] [Z P(nflc})| P(k,m) (5.1)
k=0 m=0 nf=0

where

0$n;$n;, 0 <rpny <ci, p € Py; Er,ni,:m; Z rpny =k
PEP PEP

(52)

Yk, m) = {(_1\1”,_1\1‘)

while

P(k,m)= )  PQ"N) (5.3)
(N, N*)ER(k.m)
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with
€

k
P(k,m) =1 (5.4)
3D

k=0 m=0

and

a=ca—-k+m (5.5)

is the number of channels available for data, where c; 1s the total number of channels in the
link, k is the number of voice calls in progress, m of which are presently in silence mode,
and P(n{|N¥,N*) is the steady-state probability of an M/M/c| or an M/D/c; system.
In (5.1) we simplified the notation for P(n{|N°,N*) to P(nf|c]) because it depends on
(N*,N*) only through c,

The parameters k£ and m in (5.1)-(5.5) represent the total bandwidth (channel ca-
pacity) occupied by the number of total ongoing voice calls and of voice calls in silent
mode, respectively, on which the expression for queueing probability under the M/D/c
data model is conditioned. The importance of this conditioning should not be under-
estimated; the fact that we can obtain efficient recursive expressions for the probability
distribution (mass function) of (k,m) (see Appendix C) enables us to perform the final
averaging with respect to k¥ and m and evaluate the unconditional expressions for the
performance measures of interest.

Regarding the evaluation of

c;—1

P(cj,pf) = Y P(nflc) (5.6)

d_
ny=0

which is a factor in Eq. (5.1), we proceed as follows depending on the model used for the
data traffic
(a) For an M/M/c} data model, P(c}, pff) is given by a well known formula [1] (also see

1 -1, in Appendix B.1), which can be put in the recursive form

_ 1
P dy _
P(cl’pl)- 1 + (cl_p‘) ) c;_l_p“.P(c;_l'pz)
Pi (cj—=1-pf)-P(c;=1,p})

(5.7a)

P(0,pf) =1 (5.75)
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Consequently, P(c}, p¢) can be evaluated iteratively.

(b) For an M/D/c| data model, rather than evaluating P(c}, p?) directly, we evaluate
P(n{|c}) iteratively via a special-purpose overrelaxation method (see Tijms [13] and
Appendix B), and sum up the resulting P(nf|c}) to obtain P(c}, pf).

The quantity in (5.6) represents the total probability that the residual data capacity c|

of the I-th link [given by (5.5), which depends on the number of active voice calls] is

not exceeded by the number of data messages using link /. Thus, it corresponds to the
conditional probability of no queueing of data (or alternatively one minus the probability
of finding the system totally occupied) when conditioned on the voice state.

In order to evaluate P(k,m) we define

P'(k,m) = P(k,m)/P(0,0) (5.8a)

as the normalized version of P(k,m). This results in

¢ k -1
[Z Y P’(k,m)] = P(0,0). (5.8b)

k=0 m=0

Then P'(k,m) can be obtained iteratively from Proposition 5.1 that follows, and the
probability of data queueing @ for link ! (and a single-link network) can be approximated
by

Ci k
Qi(ciippp €P)=1=) Y I|(k,m)# (c1,0)] - P(cl, pf)P(k,m)
=0 m=0
tmo Smmo () # 0) - Plcj,pf) - P'(k,m)

o Tomeo P(k,m)

=1-

(5.9)

In (5.9) we used the notation Qi(ci;pp,p € Pi) in order to emphasize the dependence
of the probability of data queueing on the voice loads (p,,p € P;). The importance of
this notation will become clear below when the approximation for a multi-link network is

obtained.
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Proposition 5.1
P'(k,m) satisfies
r ':n'ﬁ Ypep TpPpP(k—rpm—r,), ifr,<m<k<q

17153% Zpéﬂ er;Pl(k—rmm) ) if0<m <rp <k<qy
P'(k,m) = {

1, fk=0m=0
0, if k or m are not positive integer
{ multiples of r,
| (5.10a)
P'(0,0) =1 (5.100)

m>k,ork<0, orm<0,
P'(k,m) =0 if

or if (k,m) can not be represented as the linear combination of r,, p € P,

(5.10¢)
Proof: It is provided in Appendix C.

Finally, to evaluate the probability of data queueing for a multi-link network we
proceed as follows. We use the thinned voice load (under the interlink independence
assumption)

op) =pp JI (1-Le) (5.11)

tep,t£l
offered to link ! from voice path p in place of the original pj, in the functional form of (5.9).
The resulting approximation to the probability of queueing at link ! (and a multi-link

network) is

Qilciry [ 1-Leu)pe™ (5.12)
tep Ll
where L, is the probability of blocking voice calls taking path p at link ¢, which is obtained
via the knapsack approximation on the voice part (Section 4.2).
A comment is in order here regarding the theoretical accuracy of the approximation;
the practical accuracy is very satisfactory as demonstrated in Section 11 where the var-
ious approximations are compared with the results of accurate Monte-Carlo summation.

Assuming that the computation of the data portion P(c,, pff) of (5.1) is ac curate, we claim
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that the same limiting regime (i.e., when both voice load and number of channels in each
link are large but their ratio is held fixed) that yields the probability of voice blocking
B; asymptotically accurate also yields the probability of data queueing Q; asymptotically
accurate. Our justification is at this point only a conjecture (it has not been proved
mathematically) and is based on the facts that (a) the same inter-link voice independence
assumption was used as in the voice blocking probability calculation, and (b) in the evalua-
tion of Q,, the knapsack approximation was applied to the voice portion (i.e., to determine
the expected residual data capacity) for which it has already been shown to be accurate.
We anticipate to be able to establish this claim rigorously in the future.
5.2 Radio Network Model of Sections 2.1.2, 2.2.2, and 2.4.2

As discussed in Sections 2.1.2 and 2.2.2 the radio network model considered in this
report assumes that the data traffic over link ! = (n;,n2) € £ connecting the network
nodes n;,n; € N follows an M/D/c} system model independently from the other links of
the network. The residual capacity available for data is given by

c;=min{:rm— > (np-np)Tu,— ), (n:—n;)}, leL,nynpeN  (513)

Pepnl Peﬁnz

where

Z ny<Th neN.

PEPn
It is assumed that the data are queued at buffers (of infinite capacity) available at the
node transceivers. The above equation for the data link capacity expresses the dependence
of the M/D/c data model on the current voice traffic at nodes n and m. However, it does
not address the way in which a node’s unused transceivers are allocated to support data
links with each of its neighbors, as was discussed in Section 2.4.2.

To simplify the notation we consider the link | = (n;,n2) = (1,2) connecting the

network nodes 1,2 € N. The above data capacity can be written as

c=min{T) — k1 + m1, T2 — ks +m2} (5.14)
where
0<ki=) np<T, i=1.2 (5.15a)
PEP;
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OSmi=Zﬂ;Ski, :
PEP;

1,2 (5.15b)

and P; is the set of paths containing node i, for i = 1,2.
To employ the knapsack approximation in this case for a single-link network involves
defining
P(ky,my, kz,m;) = Z P(N®,N°*) (5.16)
NV, N*)ER(kr,m) k2,m3)

where

Q(ky,my,k2,m2) = { (N*,N*) |0 < n,<n;, peP; Z nd = ki, z ny=m,;, i=1,2
PEP; PEP;
(5.17)
P=PUP;

T kq T, k2

Z Z E Z P(k],fﬂ],kz,fﬂz):l

k1 =0my=0 ky=0 my=0
and writing

T ky T, k2

Q=1-3 > > D Ici#0):Pc,pf) - Pk, m1, kz,mg) (5.18)

k=0 m ;=0 ky=0 ma=0

where

cp—i
P(cj,pf) = ) Pln{lc)
ni=0
is provided by the M/D/c data model (Appendix B).
After the appropriate normalization

P,(kl,m17k2’m2) = P(klaml’kz’mz)/P(090’010) (5‘19)

and using the approach of Section 5.1, the above single-link approximation is put in the

form
Q](T] T2, pv pE 'plU'Pz) = 1_:2:02&0:2:02::,_=OI(C; # O)P(C;, pf)P'(kl»mls k27m2)
, 7 2{::0 2;:1:0 Z{::O Zf:;:o P'(kli m,, k2$m2)
| (5.20)
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with
C; = min {T] -ki+my, To =k, +mz} . (5.14)

First we consider the case P, = P,, which means that the same set of paths passes
through node 1 and node 2. In this case, k; = k3, m; = m,, and Q simplifies to

T teo Tmmo (¢} # 0) - P(c}, pf) - P'(k,m)
Qi =1- =2 =, (5.21a)
2k=0 2::;:0 P'(k,m)
where
T = min {Ty, Tz} (5.21b)
q=min{},T}-k+m=T-k+m (5.21¢)

The recursion for P'(k,m) is given by (5.10).

Next we consider the case P; # P,, in which case calls of one or more types are
supported by only one of the nodes of interest. The following Proposition holds
Proposition 5.2

P'(ky,my, k2,m;) satisfies the recursion

P'(kl’mlsk29 m2) =

[ 325 [TyemnpipiP (k1 =1, ma~ 1 ko, m2)+ T ep,ap 5P (k1 = 1, ma — 1 By = 1,mz -1)]

if 1<m;<ki<N,1<my<k <Dy

™ 5+B [Epe‘Pm‘P; ry ps P (ky — 1,my — 1; kz,mz)] ;
if 1<m; <k, my=0<k, <1y

;{?'ﬁ [Zpe‘Pm‘P; P;P'(kl,ml;kz —-1,ms - 1)] ;

3 f m=0<kh<T, 1<m<k<T

y rpred ';‘;-Lﬂ [Zpev,nv; ppP'(k1—1,my; k2, m2) 43 e p,np, PpP' (k1 —1,m; kz—l,mz)] ;
if m =0<k1 ST],mz =0<k2$T2

1; if k1=0,m1=0,k2=0,m2=0

L 0; otherwise
(5.22)
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where P5 denotes the complement of the set P;.

Proof: Refer to Appendix D where a more general proof involving constraints of the form

0<ki=) rinp<z, i=1.2
PEP;

0<mi=)Y ridnp <k, i=12
PEP;

is provided. For the approximation described in this section we considered only the special
case
rgl) =r;2) =1 pePLUP;

and
Z;=T;, 1=1,2

For the multi-link network, the knapsack approximation for node ! = (n;,n2) is ob-
tained with the help of the thinned load method, thus we use the function of (5.20) (where

1 =n; and 2 = n;) with voice loads pj [] 1 — L,,) instead of p} to get

nep.nnimal

Ql (TnnTng ’ P; II (1 - an)vp €EP U p2) ’ l= {nlyn2} €L (5‘23)

n€p,n#¥ny,ny

for a fixed value of pff and

C; =IIl.iI.l{Tnl -k -{-1’711,Tn2 — ko +m2}.
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6. PASCAL APPROXIMATION TO THE PROBABILITY OF DATA
QUEUEING

In this section we describe in detail the application of the Pascal approximation to the
evaluation of the probability of data queueing, a development that appears in this report
for the first time. This approximation is first developed for general multi-rate networks in
Section 6.1; in Section 6.2, we describe how it can be modified to suit the multi-hop radio
network of Sections 2.1.2 and 2.2.2.
6.1 General Multi-Rate Networks

In Section 4.3 the Pascal approximation used a one dimensional birth-death process
whose equilibrium probability mass function is the Pascal distribution to approximate the
number of busy circuits (paths with ongoing voice calls). In order to approximate the
probability of data queueing given by (3.13), which involves conditioning on the total
number of voice calls and the on the number of silent (inactive) calls, we need to extend
the Pascal approximation to two dimensions.

In this context, we consider the two-dimensional birth-death process (k—m,m) (where
k —m roughly represents the total rate used by all active calls and m the rate of all inactive
calls) on the state space {(k,m) | 0 < k < ¢,0 < m < k} with the transition diagram of
Figure 1, where

& :
i = [_124,.'(1_‘_;)], j=1,2i=0,1,2,...,c (6.1)
o; o;

and e2,02, for j = 1,2, are given positive numbers. Let g(k—m, m) denote the equilibrium
probability of being in state (k—m, m). Furthermore, consider the associated process (k, m)
and denote by P(k,m) the equilibrium probability of being at state (k,m).

From the local balance equations for the birth-death process (k —m, m) we know that
g(k — m,m) must satisfy the conditions

(k=m)-q(k—m,m) = A k-1-m - qg(k — 1 —m,m) (6.2)

and

m-g(k —m,m)=Azm-1- g(k —m,m~1). (6.3)
The resulting conditions for P(k,m) are
(k=m)- P(k,m) = A1 km1-m - P(k — 1,m) (6.4)
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and
m- P(k,m) = Agm—y - P(k - 1,m - 1). (6.5)

Using the above equations we can evaluate P(k,m) from the following recursion

. LYW S U . Y4 = <k<
Pk, m) = —T—A - P(k - 1,0), m=0;1<k<c (6.7a)
umer P(k-1,m-1), 1<m<k1<k<c
where
e &k A
>N Pk,m)=1. (6.8a)
k=0 m=0
I instead of P(k,m) we use the normalized version
P'(k,m) = P(k,m)/P(0,0)
then the recursion (6.7a)-(6.8a) becomes
. Ak-1 "l _ = 0- <
P'(k,m) = —7‘—‘\ P'(k-1,0), m=0;1<k<c (6.75)
ool CP'k-1m-1), 1<m<k1<k<c
with initial condition
P'(0,0)=1 (6.8b)

which is easier to evaluate [it does not require knowledge of P(0,0)] and results in
c &k -1
[Z > P’(k,m)] = P(0,0).
=0 m=0

Proposition 6.1
When ¢ = oo, P(k,m) is two-dimensional Pascal-distributed with the following pa-

rameters:
E[k - m] =€ (69)
E[m] = €2 (6.10)
var(k — m) = o? (6.11)
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var(m) = o3 (6.12)
cov(k —m,m) =0. (6.13)

Proof: It is provided in Appendix D.

The application of the Pascal distribution to the probability of data queueing involves
(as in the case of the knapsack approximation) considering first a single-link multi-rate
network, applying the Pascal approximation, and then obtaining the result for the multi-
link case using thinned voice loads in place of the initial voice loads. We start with the
following proposition
Proposition 6.2

For the singie-link multi-rate network, when the link capacity ¢ = oo, denote by n,
the number of channels occupied by voice calls in the link and denote by n, the number
of channels occupied by silence voice calls in the link, then

E[n,) = rpp} (6.14)
PEP

E[n) = —— -3 rp0° (6.15)

a+p ,EZ,, ke
Ef[n, —n,) = _£_. Z M (6.16)

a+f hrrd a4
var(n,) = Z r:p; (6.17)
PEP

- o 2 v
var(n,) = porey ,gprppp (6.18)
var(ny, — n,) = B Z 20, (6.19)

a+ﬂp€1’

cov(ny, — ny,n,) =0. (6.20)

Proof: It is provided in Appendix E.
From the above two propositions we observe that the infinite capacity single-link
multi-rate model employs the same means and variances for (n, — n,) and n, as the

two-dimensional birth-death process with parameters ¢; = E[n, — n,), €2 = E[n,}, 0f =
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var(n, — n,), and 02 = var(n,). Note that the covariances cov{n, — n,,n,} and cov{k —
m,m} are both zero. Therefore, as in the voice case, the probability of data queueing in
(3.13) for the finite-capacity single-link multi-rate model can approximated by

ca k
Qu(cipppeP)=1-3_ 3" I((k;m) # (c1,0)] - P(c], pf) - P(k,m)
k=0 m=0
_ 1 Zimo Tmeo Hl(k,m) # (e1,0)] - Plcly pf) - P'(k,m)
:'=o :u=o f”(k, m)

(6.21)

where P(c}, pf) is given by (5.7a)-(5.7b) for an M/M/c} data model and can be evaluated
from Appendix B for an M/D/c} data model, and P'(k,m) is the equilibrium probability
of the above birth-death process with parameters

B Z v
1 = T,pp (6-22)
ath PEP
a
€@ = Z TpPp (6.23)
ath PEP;
02 = B > rie} (6.24)
a+B PEP ’
ol = 2 3 Z r:p; (6.25)
o+ PEP;

which can be evaluated iteratively via (6.7b)-(6.8b). We wused the notation
Q. (cz; Pp:P € 'Pz) in order to emphasize the functional dependence of the probability of
data queueing on the voice loads (pp,p € Pi). This is necessary for the extension to the
multi-link case that follows.

For the multi-link multi-rate network we use as the approximation to the probability

of data queueing at link ! the expression
Qi | et} H (1-Le)peP (6.26)
tep t#l

where ig,, is the (approximate) probability of voice call taking path p being blocked at
link ¢, which is obtained via the Pascal approximation as in Section 4.3. As it was done in
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Section §, we again used the interlink independence approximation for voice and thinned
the voice loads p} to p} [],ep epi(1 — tm,) for p € P, in (6.26).

The same comments about the practical accuracy and the asymptotic accuracy of this
approximation with those made at the end of Section 5 are valid here.
6.2 Radio Network Model of Sections 2.1.2, 2.2.2, and 2.4.2

The general approach described in Section 6.1 above can be extended to derive a
four-dimensional Pascal approximation for the approximation of probability of queueing
data of the radio network model of Sections 2.1.2 and 2.2.2. The basic steps are similar
to those detailed in Section 5.2 for the knapsack approximation. The key step is again the
derivation of recursive expressions for the quantity f’(kl,ml, k2,m,) defined as in (5.15)
but evaluated via the Pascal method for the multi-rate case. We omit the details here which
are similar to those provided in Appendix D. For the single-rate case characterizing the
radio network model of this report the knapsack and Pascal approximations yield identical
results (see Appendix F) and thus there is no need for additional work.




7. EXTENSION OF THE APPROXIMATIONS TO M/D/c DATA MOD-
ELS AND THE AVERAGE QUEUEING DELAY AS THE PERFORMANCE
MEASURE

As discussed in Section 2 the performance measures of interest for the data traffic are

Q2 probability of data queued at link I (I € £),

ng average waiting time (not including service time) of data in queue at link [
(le L),

and their averages Q and W [refer to (2.1b)-(2.1c)] with respect to the data loads of the
links. In this section we first show (Section 7.1) that the approximations to the probability
of data queueing of Sections 5 and 6 are applicable not only to the M/M/c data model
but also to the M/D/c data model. By contrast, for the average data queueing delay these
approximations are shown (Section 7.2) to apply only to the M/D/c data model. Finally,
in Section 7.3 a modified network model that guarantees finite data delays by dedicating
a portion of the link capacity (or the number of node transceivers) to exclusive data use
is provided.
7.1 Approximations to the Probability of Data Queueing for M/D/c Data Mod-
els

Recall that for the M/M/c data model and a multi-rate system, the probability
of data queueing @, takes the form

Qi =Pr(nf >c1—k{ +k{)=1—Prc;—k + k{ > n{, where (k},k)# (c1,0)]

¢ -1
=1- Y [Z P(n‘z‘lci)} P(N®,N") (7.1)

(ﬂ”vﬂ.)enn ﬂ"=0
where
k=) rpny (7.2)
pEP:
kf =) rpnp (7.3)
PEP:
and
c=c—ki +kf. (7.4)
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P(N',N°) is the steady state probability of the voice calls evaluated in Section 3, and
P(nf|c})) is the steady state probability of the number of data packets in an M/M/c|
system. The application of the knapsack and Pascal methods for obtaining approximations
to the probability of data queueing @, was described in Sections 5 and 6, respectively, for
an M/M/c data model.

The corresponding formula for the M/D/c data model is obtained by simply re-
placing the P(n{|c}) of an M/M/c} system by that of an M/D/c; system (see Appendix
B). Consequently, the application of the knapsack and Pascal approximation methods to
Qi and an M/D/c data model is a straightforward extension of the results of Sections 5
and 6.

7.2 Approximations to the Average Queueing Delay of Data

The average data queueing delay W, for the M/M/c data model and the

M/D/c data model takes (upon application of Little’s formula) the form

average number of data packets in the queue at link I N ,Q

W, = '
! average data rate to link / }:"d (7.5)
where
oo
Ne= Y | nP(nf = +nic)| PN, N (7.6)
(N, N*)eQ, Ln=0
Fl' = pf - pf (7.7)

and P(n{|c}) and P(N", N*) are as described above for the two models. Therefore, W; can

be evaluated by applying the various approximations on N ,Q and treating Y oo nP(n{ =

ci—1

né=0 P(n{ | ¢}) was treated in the original performance

c;+n | c}) in the same manner as

measure, i.e., in the probability of data queueing. Finally, Y oo nP(nf =c} +n | c}) can
be evaluated in closed form (omitted here) for an M/M/c; system and via Tijms’ algorithm
(see [13] and Appendix B) for an M/D/c| system.

The applivation of the approximation methods of Sections 5 and 6 to the queueing
delay for data W; and a M/D/c model is described in more detail next.
7.2.1 Knapsack Approximation

As discussed above we apply the approximation methods directly to the evaluation

of the average number of data packets in the queue (N ,Q ) required for the evaluation of
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the average queueing delay W, = N,Q /F?. As in Section 5 we start with a single-link

multiple-rate scenario and write for link [

<l k oo
N2 =33 Il(k,m) # (c1,0)] - | Y _nP(nf =cj+n|c))| - P(k,m)  (78)

k=0 m=0 n=0
where
c;=c,—k+m (79)
P(k,m)= 3 P(N°,N’) (7.10)
(Y N)ER(E,m)
and

Q(k,m) = {(M,.N_’) |0<n)<ni 0<rm) <cpi pEPL Y rpnp=m; ) _rpni=k .
PEP, PEP,;

(7.11)
Let
N(c},p?) = 2 nP(n{ =cl+n|c) (7.12)
n=0
which is the zverage number of data packets in the queue for an M/D/c; system, and
is isolated from other terms in N and can thus be evaluated separately. The evalua-
tion of N(c}, pf) is straightforward from Tijms’ algorithm (see [13]) after the steady-state
probability for M/D/c data has been obtained.

Then, following Section 5 we obtain an approximation to N|* as

NzQ (cu Py H (1= Le),pe 7’:) (7.13)

LEP, t#]

where Lg, is the approximate voice blocking probability for link £ across voice path p
evaluated in Section 4.2 (via the knapsack approximation) and N, ,Q (ct; pp, PE P1)isa
function of c; and (p,, p € Pi) given by

feo Teo llksm) # (O Ncppp) - Plksm)
¢ k *
2k=0 m=0 P'(k!m)
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and P'(k,m) is given by the same equations (5.10a)-(5.10c) of Section 5.
7.2.2 Pascal Approximation

For the Pascal approximation, we define N(c}, sf) as in (7.12) and still use the ex-
pressions (7.8)-(7.11) as in the knapsack method above. However, for the average length
of data queue of link ! (and a single-link network) we now use

] k /0 d .
Y v =0 L m= I k’m c,O 'NC,p Pl(k’m)
NP py, p € Pi) = =k=0 o J1( A )#k( ] Ig}(k ri): 1)

k=0 .

m=0

(7.15)

instead of (7.14), where P'(k,m) is now obtained from (6.7b) as described in Section 6.
Subsequently, the approximation to N, ,Q (for a multi-link netwcis) is obtained again as

NP (Cl; Py H (1-Ley)pe 'Pz) (7.16)

LEP; L3

where I:l,, is the approximate voice blocking probability for link ¢ across voice path p
evaluated in Section 4.3 (via the Pascal approximation). Finally, the desired performance

)
measure W, is obtained as W; = ;‘r
]
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7.3 Network Model Modification for Guaranteeing Finite Data Delays

Since the link capacity available for data given by (7.4) can take the value 0 we can not
guarantee finite data delays unless we assume that a (small) fraction of the link capacity
is always reserved for data use.

For the multi-rate network model of Sections 2.1.1 and 2.2.1 the above requirement
implies that

cg=cf+cf - Z rpn, + Z Tpn, (7.17)
PEP: PEP,

where ¢f and ¢} are the portions of the link capacity reserved for data and voice traffic
respectively; if ¢] is not used by the current voice traffic it can be used by the data traffic
as (7.17) indicates.

For the single-rate radio network model of Sections 2.1.2, 2.2.2, and 2.4.2 the

above requirement implies that the capacity available for data at link | = (n;,n3) is

¢ =min {Ts, T4, }+min{ T2 — )~ (np —np),Te, — Y (np—-nl)p.l€L, ni,meN
PEPn, PEPn,

(7.18)
where T¢ represents the number of transceivers at node n that are dedicated to data and
T? represents the number of transceivers which are primarily used by voice; the portion of
T? not occupied by voice calls can by used by data but voice maintains preemptive priority

over data over this portion. The total number of transceivers at node n is
T.=T¢+T!, neN. (7.19)

Similarly to the comment following eq. (5.13) and the discussion in Section 2.4.2, the
above equation (7.18) does not address the way in which a node’s unused transceivers are
allocated to support data links with each of its neighbors.

Finally, note that, even if a portion of the link capacity (cf or T?) is set aside for
exclusive data use, the data delay remains finite only for average data loads smaller than
cf (i.e., pf < cf); refer to the relevant comment (Comment 2) following Proposition 3.1 in

Section 3.
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8. EVALUATION OF PERFORMANCE MEASURES VIA THE MONTE-
CARLO SUMMATION METHOD

For the purpose of comparison and testing the accuracy of the the knapsack and Pascal
approximations to the performance measures of interest we also evaluate the probability
of voice blocking, the probability of data queueing, and the queuing data delay via the
Monte-Carlo summation method. In the next subsection this method is described in some
detail and then in the following subsections it is explained how it is applied to the various
performance measures.

The key difference between the approximation method described in this section and the
approximation methods of the previous sections (Sections 4, 5, 6, and 7) is that the Monte-
Carlo summation method can provide an estimate (approximation) to the performance
measure of interest within any desired confidence interval at the cost of an increase in the
number of calls to random number generators performed. In this sense the Monte-Carlo
summation method constitutes our baseline for the true values of the performance measures
of interest in this report, and, where exact values are not available, the accuracy of all other
approximations is compared to the values generated by the Monte-Carlo simulation of the
appropriate sums.

It should be emphasized that in contrast to the familiar Monte-Carlo simulation
method the Monte-Carlo summation approach does not involve a simulation of the dynamic
behavior of the system under study. As is explained in the following section, quantities re-
lated to system performance are evaluated by using known properties of their distributions
in conjunction with a random generation process.

8.1 The Monte-Carlo Summation Method

It is now generally accepted that, in the absence of a special structure, multi-
dimensional integration (or summation) is best performed by Monte Carlo methods (7],
[15]. This method has been shown to be efficient and accurate in several applications

involving expressions of the form

K
G=>) [ (8.1)
€N k=1

12

where (2 denotes the state space of an underlying K'-dimensional vector stochastic process

n=(ny,...,nk)and qi(-), k =1,..., K, are known functions. For the cases of interest to
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our study, G represents the normalization constant of (3.10) for product-form stochastic
networks with voice traffic. However, as we have seen in Section 3 [egs. (3.12a)-(3.12b) and
(3.13)] and Section 7 {eqs. (7.5)-(7.7)), the performance measures of interest can actually
be expressed as nonlinear functions of normalization constants. Therefore, expressions of

the form

_ Lnea f(R)e(n)

®= Yonea 1(n) 6.2)

where f(-) is a known function are even more necessary than expressions of the form (8.1)
in the evaluation procedure. The method for the evaluation of (8.1) is also applicable to
(8.2). Thus, here, we will first describe briefly the method for evaluating (8.1) and then,
at the end of this subsection we will describe the evaluation of (8.2).

The starting point is to let

K
a(n) = I(n € Q) [] a(ns) (8.3)
k=1

where I(-) is the indicator function and rewrite (8.1) as follows:

N, N, Nx
?=Z YooY an) (8.4)
ny=0n,=0 nx=0

where Ni = max{n; : n € }. Thus calculating G involves a multi-dimensional summa-
tion.

First, we let V' = (%‘,V;,...,V}), 1 =1,2,...,n, be a sequence of n i.i.d. random
vectors, where each V* takes values in A = {0,...,N;} x {0,..., N2} x ... x {0,...,Ng}.
Next, we define P,(n) = P(V' = n), for n € A, which is a sampling distribution that can

be specified in a way that optimizes the efficiency of the Monte Carlo method, and set

o)
Zi = o (8.5)
P,(V')
Then the quantity
= 1,
Zn== >z (8.6)




provides an unbiased estimator for G (i.e., E[Z,] = G). Moreover, the Central Limit
Theorem implies that, for large n,

p(;Z..-G|sﬂ)§%(_Zl) =1-1 8.7)

N

where c(n) is the critical value of the standard normal distribution N(z), that is, it satisfies

c(n)

1- g = N(z)dz (8.8)
-00
and 02(Z) is the sample variance of 2%, fori = 1,...,n, i.e.,
1
03(2) = — Y (Z-Z.). (8.9)

=1

Notice that, for any fixed n (simulation size), Z, is an estimate for G, whose accuracy
can be assessed for the confidence interval 100(1 — )% by

[2.. - 3‘-”—%‘-‘—’-’2 + i’ﬁ};@] (8.10)

induced by (8.7). As the samples are being drawn, the sample variance can be calculated
and the confidence intervals can be given explicitly. Furthermore, if greater accuracy
is desired, more samples can be drawn, thereby decreasing the width of the confidence
interval. This method is particularly well suited for optimization, as only rough estimates
are needed for performance me .ures and gradients when the current solution is not close to
optimal. Ross [7] actually shows that the gradients of the performance measures pertaining
to voice can be obtained with little additional effort.
From (8.7) it is clear that the effectiver.ess of the Monte Carlo summation method
depends on
1. the effort required to generate V' from the distribution P,(n), » € A;
2. the effort required to evaluate the ratio ¢(-)/P,(-) during the sampling procedure;
3. the size of o2, the variance of Z*.
To improve the efficiency of the method the following steps are usually
taken. First, if the random variables V', V{,...,V} are independent (i.e., F,(n) =
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Py(ny)Py(n3)... Pk(nk)), the V, can be generated in a total of O(K) time with the
alias algorithm (e.g., see [16]); this computational effort is independent of the number of
values the stochastic process (which in our example is link occupancy) can take on. This
means that the method can handle networks with large link capacities. Second, selecting
the appropriate sampling distribution P,(n), for n € A, can significantly reduce the vari-
ance o2. In particular, it is desirable to sample more frequently the points n, at which
g(n) is important, which is typically done by considering functions P,(-) that are similar
to g(:). Ideally, one would like g(-)/P,(-) to be nearly constant; however, there exists a
tradeoff between this similarity and the effort required to sample from P,(-).

As we already mentioned, many performance measures of interest are given by non-
linear functions of normalization constants, and thus quantities of the form (8.2) must be

evaluated. A natural estimate for & based on an n sample simulation is

$, = %: ; (8°1)
where
= f(V')g(V")/P.(V) (8.12)
and
Z' = q(V')/P,(V). (8.13)

Although ®,, converges (almost surely) to ® of (8.3), ®, has the undesirable property
of being biased. Fortunately, this bias diminishes as n becomes large. It is also known (7]
that the ratio estimator ¥, can be made free of bias to order 1/n with a modification that
requires an insignificant amount of additional CPU time. Moreover, the confidence interval
for ® can again be constructed (see [7]) as the sampling proceeds (i.e., on line) as follows.
Let Y, and 02(Y) be the sample mean and variance associated with Y;, ¢ = 1,...,n
[defined analogously to Z, of (8.6) and 02(Z) of (8.9)]. Furthermore let

o2(Y,2) = —-Z(Y' Y. NZ'-Z,) (8.14)

=1
be the sample covariance associated with the two sets of random variables. Then the

(1 = n)100% confidence interval for ®,, is

(8.15)

b

VZn— S90062(Y,2) — 1 VuZa— SDo2(Y,Z) + 14
Z, - £202(2) 7 2,(z)
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where ¢(n) is as defined above and r, is given by

r,._\/ [Y zZ, -cz(”) o2(Y, Z)] [z’ (n) 2(Z)] [Y °(") 2)|  (8.16)

Note that the width of the confidence interval is O(1//n).
8.2 Monte-Carlo Summation for the Probability of Voice Blocking

The method described in Section 8.1 for the estimator (8.5)-(8.6) of (8.1) and the ratio
estimator (8.11)-(8.13) of (8.2) is directly applicable to the evaluation of the voice blocking
probabilities of (3.12a) and (3.12b). We need only set K = |P|, ¢(r) = P(N") of (3.9),
k = p for p € P, Nx = ¢p/rp, and qi(n) = (pp)"/n! and estimate first the normalization
constant G of (3.10). The key is of course the choice of the sampling function P(n) = P,(n).
In [7] it is suggested that we select

1

Pyn) = & Z”v, (8.17)
' pep P’

where
/1y ,ym
P
G, = Z . (8.18)
PEP m=0

The v, for p € P are the important sampling parameters. These can be set as v, = p, or
they can be selected according to a more tedious procedure (see [7]), which yields narrower

confidence intervals. The estimator of (8.5)-(8.6) then takes the form

_ "Z ; (‘;) 9n_ Y o'V Q) (6.19)

=1 =1

where G, is given by (8.18), 2V is defined by (3.11), and

o =TI (%) v (8.20)

PEP

Once G is obtained (as a function of the vector of link capacities ¢), the blocking probabil-

ities B; of (3.12a) and B, of (3.12b) are obtained from those expressions where G is used
instead of G.




Is is also possible to estimate B, directly using the estimator (8.11)-(8.13) as

P =3 = Yim Y Tim @' IV € Q)
P T M7 YL el ear)

(8.21)

where Q° is given by (3.11) and 2} is obtained from (3.11) by replacing the 1 x || vector of
link capacities ¢ by the vector ¢— Ar defined below (3.12b). The voice blocking probability
Py of (3.12a) can be estimated directly in the same manner. We may use (8.21) again with
Y} instead of 2} in the numerator; Q] is obtained from Q" of (3.11) by replacing ¢/ by
c—1.
8.3 Monte-Carlo Summation for the Probability of Data Queueing

We rewrite 1 — Qi, where Q, is the probability of data queued at link ! (! € £) as

follows,

e nyen S, N) - g(N°, N*)

tmQi= 2 v nen AN, N°) (8.22)
where
o*, N =] (e ‘(‘:Bn __:()‘:’:1'3" o< Y rpnd <anlel] (8.23)
pPEP P PP PEP
<l
fQU, N = 3 P(nfle) - T ronp, 3 mmp) # (€1,0)) (8.24)
nf=0 PEP PEP:
A= {(N°N°)I0<rpn; < ¢,0<n, <m,p€ P}
and
pi’,=af_ﬂ-p; ) p§,=a—i—§-p; (8.25)
Then 1 — @ can be estimated by the ratio estimator of (8.11) as
Ty
where o o
(VAR WIT TN ) (5.26)

P\ UY)
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Zi = ;(TKV'%)S (8.27)

and (V',U'),i=1,..,nisa sequence of i.i.d. random vectors, where each (V*,U"*) takes
values in A; P,(V',U") are importance sampling functions of the form

PV = N0 =N = o ]] ("' n,},’;,,, (N NYeA  (8.28)
l ’e?

where

cp/ry m, n,-n, n, cp/ry

G, = H Z 2 (::’ ‘)Y'z':” H Z,:v (8.29)

PEP ny=0 ny=0 PEP ny=0

and the importance sampling parameters v, and 7, are given by

a
W W= (8.30)

With the above definitions and the definitions of Y, Z 5, 02(Y), 02(Z), and 02(Y, Z)
of (8.6), (8.9), and (8.14), respectively, we obtain from (8.15) that the 1 —  confidence
interval for 1 — ®,, the estimate of 1 — Q, is

1 Y.Z, J-'l)-a',,(}’ Z)+rq 1 YaZn —(-1’-0,.(}’ Z)~rq (8.31)
Z,-2Ws3(z) 7, - o2 (z) '
where <(n) and r, are as defined in (8.8) and (8.16).
Notice that (V{,U}),(V#,Uj), ..., (‘II;’I’ U".,,l) are independent, i.e.,
P(V'=N"U'=N*)= [[ Pi(V; =n}, U = n}) (8.32)
pEP
and
P(Vj =n3 Ui =n3) = PV} =n})- P,(U, =n}|V, =n;) , (8.33)
where
‘7";
P(Vi=nl)= ——, 0<rni<e (8.34)
pIRAM T




and

n;--;on; ) n"
i N _ _  (a+8)"r »”
P(Uy =n)|V) =n}) = (m2 — m3YimaT 0<n;<n; (8.35)

Therefore, |P| of (V;,U}) can be generated independently by first generating V,/ from
P,(V;) and then generating U, from P,(U;|Vi). The alias algorithm is used for both
generating processes of V; and Uj.

In our numerical results we simulate for a 95% confidence interval with n = 300, 000
based on the importance sampling scenario v, = Py,P € P.

8.4 Monte-Carlo Summation for the Average Queueing Data Delay

This is the same as for the probability of data queueing except for the different function

f(N®,N®). The new function is given by (7.5)-(7.6) in Section 7.
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9. ADMISSION CONTROL VIA REDUCED-LOAD APPROXIMATIONS

Admission control strategies can play an important role in integrated voice/data net-
works because, by controlling in a coordinated manner the admission of new calls in all
network circuits, the overall probability of voice blocking can be reduced and so may the
probability of queueing data and the data packet delay. In this paper admission control
strategies based on (a) thresholds on the individual path traffic and (b) linear combina-
tions of voice traffic over selected sets of paths are considered. The justification for this
is two-fold: First, such admission control strategies have been shown in [11}-{12] to work
well for voice-only multi-hop radio networks of small size. Second, this type of admission
control strategies enables the extension of the approximations of this report from prob-
lems without control to problems with control at the expense of only minimum additional
computational complexity. Therefore, since our approximations can handle mid-size and
even large-size multi-hop radio networks, near-optimal control strategies can be derived
for networks of any size based on the approximate performance measures evaluated below.

After describing the relevant models for admission control in Section 9.1, we present in
Sections 9.2 and 9.3 two distinct methods for incorporating admission control strategies into
the approximation methods outlined in Sections 4 (for the probability of voice blocking) and
in 5 and 6 (for the probability of data queueing). The development in these sections appears
for the first time in this report. Only the modification of the knapsack approximation is
described in detail. The Pascal approximation can be also modified in a similar way but
this is omitted from the report.
9.1 Models for Admission Control

The problem of admission control is formulated in the context of our exposition in the

previous sections, as follows. Together with the resource (bandwidth) constraints

Z rnt<a, l€L (9.1)
PEP:

[where r, = 1 for all p € P and ¢;, Pi, | € £, must be replaced by Ty, P, for n € N for the
radio network of Section 2.1] which have played an important role in the previous analysis,

we also consider the additional control constraints

Z rn? <Y,  seS. (9.2)
PEPn
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These control constraints result in the blocking of voice calls, even when network resources
are available to support them. We refer to a system without such control constraints (i.e.,
one in which only the resource constraints of Eq. (9.1) are applicable) as an “uncontrolled”
system. In Eq. (9.2) S is the set of all such constraints, Y, is the threshold for the
s-th constraint, and P, is the set of paths involved in the constraint. These control
constraints couple the voice traffic over selected sets of paths. Moreover, direct threshold
constraints of the form

n; < X,, PEP (9.3)

can be considered as special cases of the more general constraint of (9.2). Also notice that
the quantities rf,') for p € P, involved in the s-th constraint need not be equal to (the data
rate) rp nor do they need to be equal to each other. Clearly, with this model any linear-
combination type of constraint on the number of calls of classes p € P can be considered.
The objective is to determine the set of constraints (which collectively constitute a control
policy) that results in optimal performance.
9.2 The Knapsack Approximation via Conditioning on Additional Constraints
We now show how to incorporate one additional control constraint into the knapsack
approximation, which is obtained under the standard resource constraint of (9.1). The
procedure can be extended to apply to two or more control constraints at the expense of
an increasing computational effort due to the dimensionality of the problem.

For this section we assume that S = {s} (a single-element set), that Y, is the control
threshold [it can actually be Y,/(* for r\”) = r(®) (p € P,), when all r\*’ are equal to each
other], and that ¢; is the capacity of the I-th link (I € £). We rewrite the two constraints

(the resource constraint for link [, and the control constraint with threshold Y,) as

0< ) mnp=h<a (9.4)
PEP;
0< ) rinp =k <Y, (9.5)
PEP, .

in terms of the quantities k; and k; representing the sums in (9.4) and (9.5), respectively.
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9.2.1 Probability of Voice Blocking
Application of the knapsack approximation to the above formulation yields

ci—ry Y. -";')

Kiy=1- Z 3" P(ky, k) (9.6)

k1=0 k=0

(for p € Py N P,) as the voice blocking probability where

P(ky,k)= ) P(N°,N*) (9.7)

(N° N*)eR(ky ,ka)

ks, k2) = {(E",E’)losn;sn

PEP; PEP,

(9.8)
and h—o h_oP(k,,kg) = 1. After the normalization P'(k,,k;) = P(k,,k2)/P(0,0),
(9.6) becomes

cy—-rp l

1 — Su=o t:-o' Pl(khk?) if pe ‘P, NP
. 2 TPk *
K = $1=0 Zakamo (9.9)
e P’ (ky k2) i
=== " 2= if pePINP;
Zb‘-o s;-o Pk k3)

Proposition 9.1
P’(ky, k2) satisfies the recursion

v »)
1173-%5 [ZpE'P:n‘P; rppy P! (k1 —r1p, k2)+2,€p'np r,p,,P'(k; —Tp, kg—r, )]
if 1<k <e,r <k <Y,
I‘l-.:"% EpE'P,ﬁ‘P.‘ er;P'(kl —Tp, k2)a

if rp<ky<crk2=0
P'(ky, ke) = {

Ry o

.;"%3 EPG”.“P‘ rP ppP'(kl, k2 -_ r(’))

if ky=0,r" <k,<Y,

if k=0, k2=0

if &, is not an integer multiple of r,
or ks is not an integer multiple of r5”

(9.10)
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where r, < k; < ¢; and r}.') < ks <T,.

Proof: It follows easily as a special case of of Appendix B; we only need to set ri') = s

ry) = r},'), Pr=P, Pr="P,, 2, =ci, Z; =Y,, and use only the constraints on k;; we

set m; =0for: =1,2.
9.2.2 Probability of Data Queueing

The application of the knapsack approximation to the probability of queueing data
when conditions (9.1) and (9.2) are present requires an extension of the method of Section
5.2 to incorporate additional dimensions. In particular, instead of the k;, m; for 1,2
defined and used in Section 5.2 to represent the necessary integer entities for nodes n; =1
and n, = 2 (connected by link !) and which reflect only the bandwidth (or transceiver)
conditions, we must introduce additional such entities to represent the threshold condition
of (9.2). Actually, we need a total of six integers (k;,m,; k2, m;; k3, m3) to represent all
necessary entities: (k;,m;) for the transceiver constraint on the set P; N P,, (k2,m3) for
the transceiver constraint on the set P N P,, and (k3,mj3) for the threshold constraint
on the set P,; compare with (9.4)-(9.5) and (5.15). This requires the definition of a six-
dimensional entity P(k;,m,; k2, m3; k3, m3) similar to that of (5.16) and the corresponding
recursion. The details are complicated but straightforward and are omitted. The rest of
the knapsack approximation for this case proceeds as in Section 5.2.
9.2.3 Extension to Multiple Control Constraints

The formulation, the knapsack approximations, and the recursions for the probabil-
ities of voice blocking and data queueing can be extended to include additional control
constraints of the form (9.2) for several distinct s € S. For a small cardinality number |S]|
the computational effort, although increasing exponentially (as 2!°!) with the total number
of control constraints, remains reasonable; however, for large |S| it becomes prohibitive.
This is the reason for our consideration in Section 9.3 of a different approach that requires
a substantially reduced computational effort.
9.3 The Knapsack Approximation via the Introduction of Fictitious Links

The second method for applying the knapsack approximation to integrated voice/data
networks with admission control is very straightforward and does not suffer from the
computational problems of the first. Actually, the required computational effort grows
only linearly with the number of control constraints. The key idea here is to introduce

fictitious links I, with link capacity Y, that represent each of the control constraints (s € §)
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of (9.2). On these fictitious links the paths carry information at a rate rﬁ') (which may
not be equal to r;). In this manner all voice calls transmitted over the paths (circuits)
which satisfy a particular control constraint (i.e., p € P,) use this fictitious link, that is
l, € pfor all p € P,. This means that besides the natural links of the network (part of the
given architecture) new links are added which do not represent any physical connection
but rather they signify satisfaction of control constraints. After the set of links £ has been
expanded to include the new links, that is £' = LUS, we apply the usual procedure for the
knapsack approximation to the new expanded set of links £’'. For example for the voice

blocking probability we use the recursions

Lyg = Ky, (Cp;p; H (1= Lep), p€ Py, I'€£'=£U5)
tep Al

for g € P, where Pr = {p € P|lI' € p,I' € L'} and finally By = 1 — [];1¢,(1 — Lig). In

computing Ky [for example via (4.5)-(4.6)] we must be careful to use (¢, rp) for the real

links (when !’ € £) and (Y, r},') ) for the fictitious links (when I’ € S). The above approach

is also applicable to the approximation of the probability of data queueing and the average

data delay (Section 5) after the expansion of £ to £' has taken place.




10. REVENUE SENSITIVITY VIA REDUCED-LOAD APPROXIMATIONS

In several practical problems of performance evaluation and optimization in networks
such as optimal data routing and the allocation of additional resources in response to
increases in traffic demand, the rates of change or derivatives (termed sensitivities) of
certain performance measures (termed revenue) with respect to network resources (e.g., link
capacities) and traffic loaus (e.g., average offered voice or data traffic) play an important
role. If accurate approximations to these sensitivities that require modest computational
effort for their evaluation can be derived, then they can Le used in a variety of optimization
problems to derive near-optimal control or allocation strategies. This is exactly what is
accomplished in this section.

Specifically, we first present certain popular measures of revenue and then derive their
(approximate) sensitivities with respect to link capacities, voice loads, and data loads.
This is first accomplished in Section 10.1 for the general multi-rate network model (of
Sections 2.1.1 and 2.2.1); in particular, Section 10.1.1 deals with suitable sensitivities for
voice revenue and Section 10.1.2 deals with suitable sensitivities for data revenue. Then
in Section 10.2 we outline how to modify and apply these results to the r alti-hop radio
network model of Sections 2.1.2 and 2.2.2.

10.1 Revenue Sensitivities for General Multi-Rate Networks
Suitable choices for the long-run average voice and data revenues for the multi-rate

network of Sections 2.1.1 and 2.2.1 are

W*(p%c) = Y 12op(1~ By) (10.1)
pEP

Wi(p?, %) =D 2el(1 - Qu), (10.2)
lec

where v, (p € P) and ~¢ (I € L) is the revenue rate when a path-p call is accepted and
link-£ data traffic is served, respectively. Thus (10.1) and (10.2) provide natural definitions
of the (long-term) average revenue generated when voice calls are accepted (not blocked)
and data packets are served (not queued), respectively. In the above notation p” and _;_)_"
denote the vectors of voice and data loads (pp,p € P and pf,! € £) and ¢ the vector of link
capacities (c;,! € £). In this section it is assumed that the probabilities of voice blocking

B, and data queueing @, are evaluated via the knapsack approximation.
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10.1.1 Sensitivity of Voice Revenue
The sensitivity of the voice revenue with respect to link capacities and voice loads is
evaluated in [6] (see also [7]) via the knapsack and Pascal approximation methods. Here
we repeat the results for the sake of completeness and to introduce the necessary notation.
For the voice revenue the following sensitivity measures are defined with respect to

link capacity and voice loads:

chp W (p%c— 1pe,) — W'(p"i9) (10.3)
dW™
> (1= Bp)-( - > k) (10.4)
oy o

where ¢, is an |£| x 1 vector with unit value at entries | € p and zero value at all others.

The quantities c}, in (10.3) have been called shadow prices in [6] and represent the
expected revenue lost (number of blocked voice calls) when we remove r;, circuits from link
I (or accept a call of path p at link !) for one unit of time. If we make the approximation

that class-q calls arrive at link ! according to a Poisson process with offered load
Py = Pq H (1 — Leg)
g, t#]
(termed thinned load, with L¢, as defined in Section 4.2), then the expected loss in revenue

from class-g connections being blocked at link ! due to the removal of r, circuits for one

unit of time is pj - hugp - 4, where

higp = Kigla- r,,,p;’. H 1- qu)vq' €EP “Klq ¢, P:' H (1- qu')a g €P
teq’ t#1 teg t#!

(10.5)
where K}, is given by (4.5)-(4.6). However, each class-q connection blocked on link I (if it
had been accepted), would have used r, circuits on each link £ € ¢,£ # l. Thus the expected
gain in revenue from additional connections being accepted on links £ € ¢,£ # I due to a
class-g connection being blocked at link ! for this one unit of time is 57 - higp - 2_ e, i1 Ciq-
Subtracting the gain from the loss and summing over ¢ € P yields the following system

of linear equations:

c;’p ~ Z [p;Klq (C[ —Tp, p;'vq' € pl) - p;Klq (C[, p-:"q, € Pl)] ‘ 7q - Z C:q )
q€EP: Leq t#l
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=Y [ -Bye) - s (1-By(c=me,))] - |- ¥ &) (106
4€EP teq, bl

In deriving (10.6) we first use the results of Section 4.2 to show that the relationship
between the load p; and the thinned load 57 on link !/ is

P31 = Lig) = p3(1 — By)

and from this it follows that

FyKiy (c1,7y,4' € PY) = FyLig = 7 ~ o3 (1 - By(e))-

Finally, the right hand side term in (10.4) can be interpreted as follows. An additional
call offered to route p will be accepted with probability (1 — B,); if accepted it will earn
7p revenue, but at a cost cjp for each link / € p.

10.1.2. Sensitivity of Data Revenue

In contrast to the previous section that reviewed the results of [6] for the sensitivi-
ties of the voice revenue, the derivation of sensitivities for the data revenue of integrated
voice/data multi-rate networks appears for the first time in this section. The following sen-
sitivity measures with respect to link capacities and data loads, respectively, are suggested
for the data revenue of (10.2)

cf = We(p®, p%;c) - W¥(p", p%ic - &) (10.7)
w4

—~(1-Q1)- (v -¢f) (10.8)
0p}

where ¢; is an |£| X 1 vector with unit value at the entry ! (the link in question) and zero
value at all other entries.
Since link data behavior is assumed to be mutually independent (refer to Section

2.2.1), the term in (10.7) can be obtained in the form
cf = [p}(1 - Qu(e)) - PI(1 — Qulc— &))] -7 (10.9)

following similar reasoning to that which resulted in (10.6) above for the voice revenue
shadow prices. However, because of the inter-link independence assumption the approxi-

mation in (10.9) can not be fully trusted.
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The term in (10.8) again can be obtained intuitively by noting that additional data
offered to link ! will not be queued with probability (1 — Q;); if accepted, it will earn v,
revenue but at a cost cf.

Instead of obtaining OW¢/8p§ from (10.8) for which (10.9) is necessary, an alternative
way of computing 3W?/dp{ is used in this report, according to which

aW‘ d d dA(l - Q])
of 7 (1 —-Qu)+vin Y (10.10)

where A(1 — Q;)/Ap§ denotes the ratio of finite differences for Apf = .001.

The evaluation of the data revenue sensitivity with respect to voice load is considerably
more complicated. The result is given by the following Proposition:
Proposition 10.1

The data revenue sensitivity with respect to voice loads takes the form

owd B . )
dp3 =( —B’){a+ﬂ W c—rpep) = Wi(c)
a™Pg"r "
4 4 1 n' (a+ﬁ)”r 4 d d
* ' P =iy W (2 ,p,g)}
a+ ﬂ G(g- rPgr) (ﬂv'ﬂn)'ezn(s_r’s’)g P n’!(n’ _— n’)! -— -
B
== B')[a +8 Wi (c—rpe,) — W)
+a 'C:' B . 2 P(s"'ri,) (Ev’!!’) . wd(ld1£d1£)] . (10.11)

(N, N*)ef (e~ "r£,)

where G is given by (3.3), P(c|,p{) is given by (5.6), the residual capacity for data is
¢ =ci- 2 ep Tp(np —np), and
wi(yd,p%0) = Y 2ol - Pcl pf) - I(e; > 0). (10.12)
lec

The terms in (10.11) and (10.12) can be approximated by applying the knapsack or Pascal
methods. In particular, the knapsack approximation is applied to the Q; terms in

Wi(c—rpe,) = Y _ 1ol - Qule — rpe,)), (10.13)
lec
Wée) = Y _ el - Qule)), (10.14)
lel
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and to the term

P(g—r,g')(_llo ’ E.‘)w‘(l"gda £)
(N*.N*)eR(e-rye,)

ci—1
=Y vt > Ple—rye )(N*,N*) - Y P(nflcy) - I(c; > 0). (10.15)
lec (N, N°)ER(c-rpe,) nf=0

Proof: Provided in Appendix H
10.2. Revenue Sensitivities for the Multi-Hop Radio Network of Sections 2.1.2
and 2.2.2

Recall that for the multi-hop radio network of Section 2.1.2 and 2.2.2, the link capacity
vector ¢ should be replaced by the node transceiver vector T and the rate of voice calls in
all circuitsisrp, =1, p€ P.

To obtain the sensitivities of the voice revenue we must replace cby T, c; by Ta, l € £
(links) by n € N (nodes), P; (set of all circuits or paths using link I) by P, (set of all
¢, is an V| x 1 vector with unit
value at entries n € p and zero value at all others) in (10.3), (10.4), (10.6) and all other

expressions of Section 10.1.1.

paths passing by node n), and ¢ — rpe, by I — ¢, (where

To obtain the sensitivities of the data revenue we must carry out the same substitu-
tions in (10.10) and in (10.11)-(10.14) as we did for the'voice revenue sensitivities in the
previous paragraph. In (10.11)-(10.14) the following additional substitution is necessary:
the residual (data) capacity

g=c- Z rp(ny —n;)

PEP:

of link ! € £ connecting nodes n;,n; € A [i.e., | = (n1,n2)] must be replaced by

¢; = min{Ty,, — Z (np —ny) , Z (np —np)}.

PEP,, PEPn,
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11. NUMERICAL RESULTS AND PERFORMANCE COMPARISONS

The presentation of the numerical results in this section is organized as follows. In
Section 11.1 the network paradigms used for general multi-rate wired networks and for a
radio multi-hop network are described in detail in terms of architectures, network param-
eters, and traffic parameters. In Section 11.2 comparisons of the approximations to and
the exact values of the performance measures of interest are carried out for the radio net-
work paradigm with no admission control. This is repeated in Section 11.3 for the general
multi-rate multi-hop wired network paradigm. Admission control schemes for voice traffic
(based on thresholds) in the radio network paradigm are described in Section 11.4. Section
11.5 presents the approximations to the voice and data revenue sensitivities for the radio
and wired network paradigms of Section 11.1. Finally, Section 11.6 discusses the required

computational effort for the various approximations.

11.1 Network and Traffic Models for the Paradigms Used

The two networks of interest are shown in Figures 2a-2b and 3a-3b. The network of
Figure 2a is the paradigm shown in [11]-[12]. It is a ten-node multi-hop radio network, in
which the main resource of interest is the number of transceivers at each of the network
nodes. In most of our examples involving this network, T (which denotes the vector of
transceivers at the ten network nodes) takes the value T’ = (8,8,8,8,8,8,8,8,8,8); we also
study T = (4,4,4,4,4,4,4,4,4,4) to demonstrate the quality of the approximations when
applied to a smaller system. In Figure 2b, the five circuits used by voice calls in the network
of Figure 2a are shown. The voice calls follow the model of Sections 2.2.1 and 2.2.2 and
have in all examples (unless specified otherwise) activity factor ;-_-‘:—5 = .4 (half-duplex);
however; limited results are also presented for voice activity factors of 0.8 (full-duplex)
and 1.0 (corresponding to a voice model with no silence periods). The network data traffic
is transmitted over the same nine links, that are used by the aforementioned five voice
circuits. As discussed in Section 2.2.2, an M/D/c model is used for data traffic over the
above nine links, with capacities defined by Eq. 2.0. In this model, the data can only
use transceivers that are not occupied by voice calls. In the model of Section 7.3, some
transceivers at every node are a priori dedicated to data traffic and the data link capacity
is defined by (7.18); we will come back to this model when we show results for the average
data delay. The network of Figures 2a-2b is characterized by a single data rate, which

assumes a common value for both voice and data traffic.
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Figures 3a and 3b, show the multi-rate star network of [6], which is used in this
section as a paradigm of a general-purpose integrated voice/data multi-rate wired network.
The main network resource is the vector of link capacities ¢. Initially we reproduce the
example of [6] by setting ¢ = (90,100,110, 120) for the four links of the network; later we
demonstrate the accuracy of the approximations for smaller values of the link capacities
as well. There are twelve voice circuits in the network of Figure 3a; and Figure 3b lists the
links used and the transmission bandwidth required for each voice circuit. Data traffic is
assumed to always require unit transmission bandwidth. The voice model is described in
Section 2.2.1 and the activity factor for the voice calls is ;_% = .4. An M/D/c model is
again used for data traffic with link capacity given by (3.7b). In this model, data traffic
is allowed to use only the capacity left unused in the four network links after the voice
call requests have been accommodated. In the model of Section 7.3, some portion of the
capacity of each link is a priori dedicated to data traffic and the data link capacity is given
by (7.17); we will come back to this model when we show results for the average data delay.

11.2 Comparisons of Approximations for the Radio Network of Figure 2 with-
out Admission Control

This group of numerical results pertains to the radio network model of Figure 2 in
the absence of admission control, i.e., a voice call is admitted if and only if a transceiver
is available at every node along the predetermined path. Networks with eight transceivers
per node are evaluated in Section 11.2.1 and networks with four transceivers per node are
evaluated in Section 11.2.2. In these two subsections, the entire number of transceivers
at each node is available for use by the voice traffic; data traffic is served only if some
transceivers remain unoccupied. However, in Section 11.2.3 we also evaluate networks for
which one pair of transceivers is dedicated to data traffic for each of the nine data links in

the network of Figure 2.

11.2.1 Results for a Radio Network with Eight Transceivers per Node

We first consider the case of T = (8,8,8,8,8,8,8,8,8,8), i.e.,, each node has eight
transceivers. Figures 4 and 5 show the exact value, knapsack approximation, and Monte
Carlo summation (the midpoint of the confidence interval is shown) for the average prob-
abilities of voice blocking and data queueing, versus the offered voice and data loads,
respectively. The “exact value” solutions for the probability of voice blocking are based on

the product-form solution. Those for data packet queueing are based on the M/D/c model

69




and Kleinrock's independence assumption, thus in the latter case the results are not truly
exact but rather they are based on closed-form approximations. In both figures, the prob-
abilities of voice blocking and data queueing represent the averages of such probabilities

over all voice circuits and data links in the radio network, respectively, that is,
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In Figure 4, the value of the data load is irrelevant (since voice has priority over data)
and the offered voice load pprp ranges from 0 to 15. In this case, we have a single-rate
network with r, = 1 for all paths, and pp takes the same value for all five paths (voice
circuits). Notice that the knapsack approximation, the Monte Carlo summation method,
and the exact expression for the probability of voice blocking yield results that are very
close to each other for all values of the offered voice load. Recall that the knapsack and
Pascal approximations yield identical results for single-rate networks.

In deriving the approximation via the Monte Carlo summation method, we used
300,000 sample points (calls to the random number generator computer routines), which
resulted in a confidence interval of 95%. Importance ‘sampling scenarios according to
which 7, = p, (p € P) for the probability of voice blocking (refer to Section 8.2) and
Y1p = ppB/(a + B), 72p = ppa/(a + B) (p € P) for the probability of data queueing (refer
to Section 8.3) were used. Recall from the discussion in Section 8 [following equations
(8.7)-(8.10) and (8.14)-(8.15)] that the confidence interval parameter n and the number
of samples (calls of the random number generator) n are related in a complicated man-
ner [e.g., see (8.10)], which involves the sample variance o,(Z); therefore, the appropriate
value of n that guarantees the desirable confidence interval is found through trial and error.
The number 300,000 given above represents the result of several such attempts to find a
number that is sufficiently large to work for most situations of interest (for all different
values of the sample variances for the numerical examples considered). The variation of
the 95% confidence interval did not exceed 2% of its mean value during this search.

Similar results are shown in Figure 5, in which the offered voice load is pyrp = 5.5

for all voice circuits, and the offered data load pf ranges from 0 to 4. The data loads of
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all nine links are assumed equal. Again, the knapsack approximation is very close to the
exact value of the probability of data queueing.

Tables 1-4 amplify the results of Figures 4 and 5 by providing detailed comparisons of
exact values, knapsack approximation, and Monte Carlo summation for the probabilities
of voice blocking and data queueing for a broad range of offered voice and data loads.
The column denoted “percent error” refers to the percent relative error generated via a
comparison of the results obtained using the knapsack approximation to the exact values
[ = 100 x (knapsack-exact)/(exact)]; the sign of the relative error has been maintained in
these calculations. The results are organized in a manner that first presents the results for
the average quantities (averaged over the traffic loads of all paths or links) and then the
individual results for each path or link. This organization plan is followed for basically all
the numerical results presented in tabular form in this report. Table 1 shows the average
probability of voice blocking B (over all paths) for different average voice loads p* defined

as
B PR

PEP

Then Table 2 shows the individual probabilities of voice blocking B, for each of the paths
p (p € P) for three values of the path voice loads pj; recall that r, = 1 for the radio
network of Figure 2.

Similarly, Table 3 shows the average probability of data queueing Q (over all links)

for different average voice loads 5, average data loads 5¢ defined as

'Zp"

lec

and for the three voice activity factor values 0.4, 0.8, and 1.0.

Then Tables 4a, 4b, and 4c show the individual probabilities of data queueing Q; for
each of the links I (I € £) for various data loads p{, for voice activity factors 0.4, 0.8, and
1.0, and for voice loads 0.1, 1.0, and 2.0, respectively.

In the case of the single-rate radio network of Figure 2, since r, = 1 for all p € P,
if the utilizations p} are equal for all paths, then p* = p as well. Similarly, equal values
of p? for all data links imply that p? = p{ as well. Therefore, since in all tables of this
subsection the p}'s are equal to each other for all voice paths and the pj’s are equal to
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each other for all data links, no distinction is made in the text between the values of Py
and p° or between the values of pf and 5¢. In any event the caption of each table contains
all necessary information about the voice and data loads.

In particular, in Table 1, the approximations and the exact value of average probability
of voice blocking are compared for different values of the average offered voice load (5* =
Pps P € P). 1t is observed that the agreement between the approximations and the exact
value is from excellent to very satisfactory over the entire range of values of the offered

voice load considered.

We take the opportunity here to quantify the terms excellent, very satisfactory, and
satisfactory (or fair) pertaining to approximation accuracy and used throughout this sec-
tion. By excellent accuracy we mean that relative error between the approximation and
the exact value is smaller than 1%; by very satisfactory we mean that the relative approx-
imation error is smaller than 5%; and by satisfactory (or fair) we mean that the relative
approximation error is most of the time smaller than 10% and occasionally between 10%
and 20%. In all of our examples, the exact value always falls within the confidence interval
provided by the Monte-Carlo summation method.

In Table 2, the results of Table 1 are shown in greater detail for the voice-blocking
probabilities of each of the five voice circuits of the radio network and for offered voice
loads equal to 1.0, 5.5, and 10.0 for all paths. Again, the approximations are very accurate

for all voice circuits, although a variation in accuracy is observed from circuit to circuit.

Similarly, in Table 3, the knapsack approximation and the exact value of the average
probability of data queueing are compared for different values of the offered voice and
data load. For each of these tables the results are shown for data loads (3¢ = pf, I € £)
of 0.5, 2.5, and 4.0 (corresponding roughly to situations of light, moderate, and heavy
data traffic) and for several values of the voice loads (5° = p,, p € P). The accuracy
of the knapsack approximation remains very satisfactory over the entire range of traffic
parameters of interest.

Tables 4a - 4c show certain results of Table 3 in greater detail for the probabilities of
data queueing at each of the nine data links of the radio network of Figure 2. The results
are compared for the three voice activity factor values 0.4, 0.8, and 1.0 for voice loads
0.1 (Table 4a) and 1.0 (Table 4b) and data loads 0.5, 2.5, and 4.0. Results for percent
error are included only for queueing probabilities greater than 0.0005. Again, the knapsack

72




maintains from excellent to satisfactory accuracy over the entire range of traffic parameters
of interest.

The results of Tables 2 and 3 (for probability of voice blocking) and Tables 3 and 4 (for
probability of data queueing) demonstrate that the knapsack approximation is accurate
not only when averages are taken over all circuits (paths) or links, but also when the

network is examined at a more detailed “microscopic” level.

11.2.2 Results for a Network with Fewer Transceivers per Node

In the next group of tables (Tables 5, 6, and 7), we repeat the above results for
the radio network of Figure 2 and a node transceiver vector T = (4,4,4,4,4,4,4,4,4,4),
that is, each node has four transceivers. The voice activity factor is 8/(a + 8) = 0.4
for all results in this subsection. Table 5 shows the average probability of voice blocking
(knapsack approximation and exact value) for different voice loads. It is observed that
the accuracy of the knapsack approximation for this paradigm is inferior to that of the
the radio network with transceiver vector T = (8, 8,8, 8,8, 8, 8, 8,8,8) (Tables 1 to 4); that
is, there is a degradation in the accuracy of the approximation, as the number of the key
network resource (the node transceivers) decreases. However, the (relative) approximation
error still remains smaller than 5% of the exact value for offered voice load greater than
4.0.

Table 6 shows the knapsack approximation and the exact value of the average proba-
bility of data queueing for different voice and data loads. Similar trends to those observed
for the average voice-blocking probability are observed here as well. Table 7 shows in detail
certain results of Table 6 for the probabilities of data queueing of each of the nine data
links of the radio network and, in particular, for the values 0.2, 1.0, and 2.0 of offered
data load and the values 0.1 (in Table 7a), 1.0 (in Table 7b), 5.0 (in Table 7¢), and 10.0
(in Table 7d) of the voice load. Again, the knapsack provides satisfactory performance,
although the agreement with the exact values is not as good as for the larger system of
Section 11.2.1.

11.2.3 Results for a System with Transceivers Reserved for Data

The last group of Tables in this subsection (Tables 8, 9, and 10) pertains to the
radio network model of Figure 2 modified according to requirements of Section 7.3 so that
finite data delays can be guaranteed. According to this model, a pair of transceivers for

each of the nine data links is dedicated to data traffic; that is, the data link capacity

73




vector ¢ = (1,1,1,1,1,1,1,1,1) is guaranteed a priori. Thus, instead of the original node
transceiver vector T = (8,8,8,8,8,8,8,8,8,8), the five voice circuits of Figure 2b can
only use the transceiver vector IT° = (5,7,7,7,4,7,4,7,7,7) that remains after the data
transceivers have been assigned. The voice activity factor is 8/(a + 8) = 0.4 for all results
in this subsection.

In Table 8, the Monte-Carlo summation and knapsack approximations are compared
to the exact value of the blocking probability for each of the five voice circuits and for
the average value for a voice load of 2.5. The accuracy of the approximations remains
satisfactory but it is inferior to that of the Tables 1 and 2 for which the voice transceiver
vector was T = (8,8,8,8,8,8,8,8,8,8); the smaller number of transceivers available for
voice traffic degrades somewhat the accuracy of the approximations. In Tables 9 and 10,

the average data delay

W = Yiec IV
Liechi

(measured in terms of packet duration prior to starting transmission) and the delays of each
of the nine data links W; (I € L), respectively, are shown in terms of the exact value and
the knapsack approximation for values 2.5 and 10.0 of the offered voice load and 0.7, 0.9,
and .999 of the offered data load. Again, as in the case of the probability of queueing data,
the “exact value” for the queueing delay is actually a ¢losed-form approximation based
on the M/D/c model and Kleinrock’s independence assumption. Satisfactory accuracy is
observed in all cases.
11.3 Comparisons of Approximations for the Multi-Rate Network of Figure 3
without Admission Control

Figures 6 and 7 and Tables 11 to 14 pertain to performance results and compar-
isons of approximations for the multi-rate network of Figure 3, in the absence of ad-
mission control. The twelve voice circuits of this network (see Figure 3b) have rates
r'=(1,1,1,1,1,1,5,5,5,5,5,5) and the four data links have rates r¢ = (1,1,1,1). Fig-
ures 6 and 7 pertain to the multi-rate network of Figures 3a and 3b with the link capacity
vector ¢ = (18,20,22,24). The voice activity factor is 8/(a + ) = 0.4 for all results in
this subsection.

In Figure 6, the average voice blocking probability is depicted versus the offered voice
load pprp over the range 0 to 3. The load ppr; takes the same value for all twelve voice
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circuits. Whenever pyr, (p € P) assumes a particular value, e.g., 1.5, the corresponding
value of p, is obtained from 1.5/r, for each p € P, where r, takes values 1 or 5 according

. to the vector of voice path (circuit) rates above.

For all tables in this subsection the offered loads (p}) of the first six voice paths with
rp =1, p=1,2,...,6 are equal to each other, and the offered loads of the remaining six
voice paths withr, =5, p=17,8,...,12 are also equal to each other and equal to one fifth
of the common value of the first six. This implies that the average voice load 5* = p} = 5p5.
Once these relationships are established the specific values of the loads are only shown in
the caption of each table and they are not elaborated upon in the accompanying narrative.

As observed in Figure 6, the difference between the knapsack and Pascal approxi-
mations and the middle of the confidence interval of the Monte-Carlo summation is very
small for the entire range of values of the offered voice load. Similarly, in Figure 7, the
average probability of data queueing is illustrated as a function of the offered data load
p‘,‘. The data loads of all four links are assumed equal and the offered voice loads PpTp
are all equal to 2.0. Again excellent agreement is observed between the three approxima-
tions. The exact values for the probabilities of voice blocking and of data queueing are
extremely time-consuming to compute for the multi-rate network in question, so they were
not generated. However, since the Monte-Carlo summation method provides a confidence
interval for the value of the performance measure of interest, we can judge the accuracy of

the approximations even without having their exact values.

In Table 11, the average voice blocking probability is shown for the multi-rate network
of Figure 2, different link capacity allocations, and different values of the offered voice loads.
The four link capacity allocations considered are ¢ = (90,100,110, 120), ¢ = (18,20, 22,24),
¢ = (9,10,11,12), and ¢ = (5,5,6,6) and they are termed allocations 1, 2, 3, and 4,
respectively. Allocation 1 is the example studied in [6]. The others are obtained by
reducing the link capacities proportionally (or nearly so). The offered voice loads depicted
in Table 11 have been selected so that they correspond to conditions of very iight traffic
(voice-blocking probability smaller than 0.1%), light to moderate traffic (voice-blocking
probability around 1.0%), and moderate to heavy traffic (voice-blocking probability larger
than 10.0%), for each of the four capacity allocation scenarios. Note that as the number
of channels per link decreases, the offered voice load that corresponds to any particular

blocking probability decreases at a much faster rate. For example, let us compare the
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results for capacity allocations 1 and 3. Although the link capacities are decreased by a
factor of 10, the traffic levels corresponding to a specific blocking probability are decreased
by a considerably larger factor, especially at low blocking probabilities. Such a behavior
is expected; the availability of a large number of channels permits operation at higher
throughput levels, because we can take advantage of the law of large numbers.

The knapsack and Pascal approximations remain relatively close to (but generally
above) the upper edge of the confidence interval obtained via the Monte Carlo summation
method. However, they appear to move farther away from that upper edge (corresponding
to larger error) as the number of channels in the capacity allocation schemes decreases.
Although we cannot claim that the knapsack approximation is uniformly more accurate
than the Pascal approximation, it appears that the former ought to be trusted over a
broader range of traffic (offered voice loads) and network (link capacities) parameters than
the latter.

Tables 12a and 12b show in greater detail the voice-blocking probabiliies of each of
the twelve voice circuits of the network of Figure 3. In particular, in Table 12a the detailed
results (knapsack, Pascal, and Monte Carlo approximations) are shown for offered voice
loads of 8.0, 10.0, and 15.0 and for capacity allocation 1. The loads of the individual voice
circuits are such that the average voice load takes the values 8.0, 10.0, or 15.0 once the
rates of the different circuits have been accounted for. Again, the knapsack approximation
appears to be superior to the Pascal approximation. Table 12b shows the probabilities of
blocking for all twelve voice circuits for capacity allocation 2 and for offered voice loads
0.3, 0.7, and 1.7. The knapsack approximation appears io be superior to the Pascal
approximation over a broad range of traffic and network parameters. The accuracy of
the approximations exhibits a slight degradation, as the number of link channels in the
capacity allocations decreases from that of capacity allocation 1 (90, 100, 110, 120) shown
in Table 12a to that of capacity allocation 2 (18, 20, 22, 24) shown in Table 12b.

Tables 13 and 14 parallel the results of Tables 11 and 12 for the probability of data
queueing. In particular, Table 13 shows the average probability of data queueing for the
four capacity allocations and the different voice and data loads. The specific values of
the offered voice and data loads have been selected so that they result in probabilities of
data queueing of the order of 0.1%, 1.0%, and 10.0%, respectively, corresponding to light,

moderate, and moderately heavy traffic. The knapsack and Pascal approximations appear
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to be either within or close to the edges of the confidence interval obtained via the Monte
Carlo summation method. Again, the knapsack approximation appears to be superior to
the Pascal approximation over a broad range of traffic and network parameters. Table 14
corm:plements the results of Table 13 by showing the probabilities of data queueing at >=ch
of the four data links of the network of Figure 3 for capacity allocation 2 and for different
voice and data loads. The voice loads, for which results are shown, are 0.3, 0.7, and 1.7;
the data loads are selected in the manner discussed in Table 13. Observations similar to
those made for Table 13 are valid here as well.

11.4 Threshold-Based Admission Control for the Radio Network of Figure 2

The group of Tables 15-20 presents a comparison of the voice blocking probabilities
and probabilities of data queueing for t . > radio network of Figure 2, when admission
control is used. Iu particular, three types of admission control are employed for deriving
the results of Table 15: (i) Equal thresholds X, = 6 on the voice traffic of all five circuits
of Figure 2b, (ii) Optimal threshold-only policies such that X, < 6 on the voice traffic of
all five circuits, and (iii) Optimal full admission control policies that consist of thresholds
X, on individual circuit traffic and thresholds Y, on linear combinations of circuit traffic
over selected sets of circuits. The threshold constraints on individual circuit traffic take
the form

n; <X, p=12345

The linear constraints on selected sets of voice circuits are
n] +n3 <Y, (control constraints from node 5)

n] +n; <Y, (control constraints from node 7)
n; +n; <Y; (control constraints from node 5)
n; + ny <Y; (control constraints from node 5)
ny + ny <Y; (control constraints from node 7)

These are identical to the admission control schemes considered in (11} and [12]. To the

above contrnl constraints one should add the resource constraints of ‘he form

Zn;STn, neN

PEPy
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where T, is the number of transceivers at node n and P, is the set of paths intersecting

at node n.

Together with the results of Table 15, one should also go back to Table 1, where
no admission control was used. In Table 15, the optimal thresholds obtained for con-
trol policies (ii) and (iii) are shown for different values of the voice load; in the former
case they are of the form (X, X3, X3,X¢,Xs), in the latter case they are of the form
(X1,X2,X3,X4,X5,11,Y,,Y3,Y,,Ys). In this table, the optimal thresholds are selected
on the basis of the exact average probability of voice blocking which is obtained from the
product-form solution (as in [11]). The Monie Carlo summation and knapsack approxi-
mations are also shown for these thresi:oids, so that the accuracy of the approximations
is checked against the exact value when admission control is used. The comparisons are
favorable for both approximations, although the accuracy would be better if the number
of transceivers at each node were higher. However, the knapsack approximation does not
achieve its minimum value under the optimal thresholds of control policies (ii) and (iii);
these optimal thresholds were obtained by using the exact value of the blocking probability.
Consequently, we can not repeat the comparisons of [11] for the .ferent control policies
based on the knapsack approximation. However, as established witl. the results of Table
20 below, meaningful comparisons can be made for thresholds obtained from the knapsack

approximation.

Table 16 shows the exact value and the knapsack approximation of the voice blocking
probabilities for each of the five voice circuits of Figure 2b, ~oice loads pp = 2.5 for all
circuits, and several different thresholds of the admission control policy (ii). The knapsack
approximation shows satisfactory accuracy for all situations examined. Table 17 presents
similar results as Table 16, but for different thresholds of the full admission control policy
(i11). Again, the knapsack approximation shows satisfactory accuracy for all situations
examined, but the accuracy is inferior to that observed in Table 16. In both tables, the
accuracy of the knapsack approximation can be improved at the expense of significant
computational complexity, if the method of Section 9.2 is used instead of that of Section

9.3, which was used to derive the numerical results presented.

Tables 18 and 19 complement Tables 15, 16, and 17 by presenting results for the
probabilities of data queueing in the presence of voice admission control. The voice activity

factor is 8/(a + B) = 0.4 for all results in this subsection. Table 18 shows the average
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probability of data queueing for a data load of 2.5, for all nine data links and for different
voice loads and admission control thresholds. The thresholds are the optimal thresholds for
control policy (ii) in Table 15. Again, the observed accuracy of the knapsack approximation
remains satisfactory, but inferior to that of networks without admission control (see Table
3). Similarly, Table 19 shows detailed results of the probabilities of data queueing at each
of the nine data links of the network in question for a data load of 2.5 and different voice
loads and admission control thresholds. Observations similar to those made for Table 18
are valid; moreover, the accuracy of the knapsack approximations appears to decrease as

the offered voice load increases.

Table 20 compares the exact value and the knapsack approximation for the average
voice blocking probability of the radio network of Figure 2 for different voice loads and
three admission control scenarios: (a) no control, (b) threshold control on individual voice
circuits based on thresholds selected by minimizing the knapsack-evaluated average block-
ing probability, and (c) threshold admission control based on optimal thresholds obtained
by minimizing the exact average voice blocking probability [controls of type (ii) in Table
15]. The percentage improvement (decrease) of the exact blocking probability of the un-
controlled system when knapsack-based thresholds and optimal thresholds are used is also

shown in separate columns.

As shown in Table 20, the optimal thresholds derived under policies (b) and (c) dif-
fer in one or more voice circuits; however, the performance obtained using the knapsack-
optimized thresholds is almost as good as that obtained using the truly-optimal thresholds.
For example for an offered voice load of 5.5, the optimal knapsack-optimized thresholds
are (1,8,8,8,8) and incur an exact blocking probability of 0.453, whereas the truly optimal
thresholds are (1,8,8,8,2) and incur an exact blocking probability of 0.448; the correspond-
ing exact value for the uncontrolled system is 0.472. This corresponds to a 4% improvement
(decrease) of the voice blocking probability when the knapsack-optimized thresholds are
employed, versus the 5% decrease that can be achieved with the truly optimal thresholds.
This improvement resulting from admission control is more drastic for large offered voice
loads and for voice blocking probabilities. Up to a voice load of 6.5 the improvement
increases as the voice load increases; however, for higher voice loads the improvement

decreases with increasing offered voice load.

The results of Table 20 above together with those of Table 23 below (which estab-
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lish the significant computational advantage of the knapsack approximation over the exact
expressions) provide ma jor motivation for applying the knapsack approximation to prob-
lems of control and optimization. Thus the knapsack approximation is useful not only for
performance evaluation (as shown in Tables 1 to 14), but for control and optimization as

well.

11.5 Voice and Data Revenue Sensitivities for Networks of Figures 2 and 3

The next group of tables (Tables 21a-21c and 22a-22c) pertains to the voice and data
revenue sensitivities of the multi-rate network of Figure 3 and to the radio network of Figure
2. These sensitivities were derived in Section 10 and find diverse applications to problems
of addition of network resources (e.g., additional transceivers), optimal data routing, joint
voice control and data routing etc. In evaluating the revenue sensitivities we need the
voice-revenue rates 7p for all voice circuits, and the data revenue rates v¢ for all data
links of the network. In Table 21, the revenue sensitivities are obtained for the network of
Figure 3, an average voice load of 10.0 with circuit loads (10,10,10,10,10,10,2,2,2,2,2,2) and
rates (1,1,1,1,1,1,5,5,5,5,5,5), and offered data loads of 50 for each of the data links in the
network. The capacity allocation is ¢ = (90, 100, 110, 1_20), the vector of voice revenue rates
is arbitrarily chosen to be (1.0,1.2,1.4,1.6,1.8,2.0,3.0,3.6,4.2,4.8,5.4,6.0), and the vector of
data revenue rates is (1.0,1.2,1.4,1.6). The voice activity factor is 8/(a + 8) = 0.4 for all
results in this subsection. ’

Table 21a shows the Monte-Carlo summation, knapsack, and Pascal approximations
to the average voice revenue sensitivity with respect o the loads of all twelve voice circuits.
The two approximations are either within or relatively close to the edges of the confidence
interval obtained via the Monte Carlo summation method. Table 21b shows the average
data revenue sensitivity with respect to the loads of each of the voice circuits. Again,
the approximations and the confidence interval are in relatively satisfactory agreement
with each other. Table 21c¢ shows the average data revenue sensitivity with respect to
the loads of the four data links of the network in question. Similar observations for the
approximations like those for Table 21b are valid. It is significant that in all these tables
the sign of the exact values of the sensitivities and of the approximate sensitivities is always
the same. This guarantees that the the use of the approximate sensitivities (instead of the
computationally inefficient exact expressions) in optimization routines will still move the

optimization algorithm (e.g., the gradient descent algorithm) to the right direction for
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optimizing the objective function (performance measure) of interest.

In Table 22, the voice and data revenue sensitivities for the radio network of Figure
2 are presented for a vector of voice revenue rates (1.0,1.2,1.4,1.6,1.8) and for a vector of
data revenue rates (1.0,1.2,1.4,1.6,1.8,2.0,2.2,2.4,2.6). In Table 22a, the exact value and the
knapsack approximation to the average voice revenue sensitivity with respect to the loads
of each of the five voice circuits are shown; the voice loads of all circuits are equal to 5.5.
There is satisfactory agreement between the knapsack approximation and the exact value;
the relative error remains below 10%, for most circuits. In Table 22b, the average data
revenue sensitivity with respect to the loads of all five voice circuits of the same network
are shown for a load of 5.5 for all voice circuits and for two different data load scenarios:
one for which the load of all nine data links is equal to 4.0 and another for which it is 2.0.
The accuracy of the knapsack approximation here is inferior to that observed in Table 22a,
or in Table 21b. This is because the radio network has fewer resources and the knapsack
approximation’s accuracy decreases as the number of channels in each link decreases. In
Table 22c, the average data revenue sensitivity with respect to the loads of each of the nine
data links of the network in question is shown for a load of 5.5 on all five voice circuits and
the two data load scenarios of Table 22b. The knapsack approximation here appears to be
more accurate than that of Table 22b. Similar comments about the common sign of the
approximate sensitivities and the exact expressions as for Tables 21a-21b are valid here.

Overall, the accuracy of the knapsack approximatic;n for the voice and data revenue
sensitivities appears reasonable and suggests that it can be used instead of the exact values
(whose evaluation is computationally prohibitive) in problems of data routing, addition of

resources, and so on. A detailed study of these issues will be addressed in the future.

11.6 Required Computational Effort for Various Approximations

Table 23 provides a comparison of the computational effort required for generating
the various approximations and exact values of the probabilities of voice blocking and data
queueing for the radio network of Figure 2 and the multi-rate network of Figure 3. In
the framework of this comparison, the radio network of Figure 2 is typical of a small-size
network and that of Figure 3 is typical of a medium- to large-size network. SUN SPARC
Station Il workstations were employed for all necessary computations. The computer code
was written in C and was not optimized.

From the table we see that the computational advantage of the knapsack and Pascal
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approximations over the exact expression is tenfold and over the Monte Carlo summation
is thirtyfold for the small-size network of Figure 2. For the mid-size network of Figure 3,
the advantage in speed of the knapsack and Pascal approximations over the Monte Carlo
summation becomes six-hundred-fold, whereas the time necessary for the evaluation of the
exact value is prohibitive for most computers. With the latter statement we mean that the
required computation time is estimated to be of the order of 6 to 7 days for that paradigm
and thus useless for optimization (control or resource allocation) purposes.

The computation time for the probabilities of voice blocking and data queueing ap-
pears to be identical for both network paradigms, despite the fact that the probability of
data queueing is inherently more complicated (additional conditioning and averaging are
involved), for the following reason. We store the pre-computed (recursively) values of the
conditional M/D/c data queueing probability (conditioned on the voice state) and then
use them in the knapsack approximation (refer to Section 5 for the appropriate equations
indicating the conditioning and final averaging). Of course, the memory (storage) require-
ments for the evaluation of the probability of data queueing are considerably larger than
those of the probability of voice blocking.

Table 23 establishes the unquestionable computational advantage of the knapsack
and Pascal approximations over the exact expressions for the performance measures of
interest and for networks of any size. These two approximations appear to require a
computational effort that remains relatively insensitive to the network size. The Monte
Carlo summation method is computationally efficient only for small- and mid-size networks.
These facts, together with the very satisfactory accuracy of the approximations over the
entire range of traffic and network parameters of interest, establish these approximations as
excellent candidates for the time-efficient and accurate performance evaluation of networks
of arbitrary size and resources (link capacities), as well as for the derivation of near-optimal

control schemes that optimize the above performance measures.




12. CONCLUSIONS

In this section we recapitulate the most important features of the approximations
developed in this report and draw conclusions about their applicability to problems of
network control and optimization, sensitivity analysis, and performance evaluation.

12.1 Accuracy and Computational Advantage of Approximations

In this report, we developed reduced-load approximations (based on the stochastic
knapsack and the Pascal distribution) and Monte-Carlo summation techniques, which en-
able the accurate and computationally efficient evaluation of the probability of blocking
of voice calls, the probability of data link queueing, and the average data link delay in
integrated multi-hop radio networks. Accurate and time-efficient approximations are nec-
essary, because the computational effort for the evaluation of the exact expressions for these
performance measures is prohibitive for networks of even moderate size. By contrast, the
approximations of this report (refer to Table 23) are very time-efficient.

12.2 Application of New Approximation Techniques to a Broad Range of Net-
work Architectures and Traffic Types

Although the knapsack, Pascal, and Monte-Carlo Summation methods had already
been applied to multi-rate voice-only circuit-switched networks, they had never been ap-
plied before either to the performance evaluation of multi-hop radio networks or to networks
with integrated voice and data traffic. And, even for multi-rate voice networks, they were
thought to be accurate only in the limiting regime characterized by large link capacities
and large offered voice loads while their ratio maintained a fixed value.

In this report, besides extending the applicability of the aforementioned approxima-
tions to radio networks (with transceivers at the nodes being the network resource rather
than the link capacities) and to integrated voice and data traffic, we showed that these
approximations exhibit excellent to very satisfactory accuracy, for the entire range of
network parameters (e.g., size, link capacities, number of transceivers at nodes) and
traffic parameters (e.g., voice and data loads, voice activity and silence periods) of inter-
est. Moreover, the accuracy of the approximations is very satisfactory not only for the
average performance measures (i.e., averaged over all circuits and links of the network)

but also for the performance measures characterizing individual circuits or links.
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These approximation methods are applicable to single-rate networks characterized
by a single bandwidth assignment for all voice circuits, as well as to multi-rate networks,
in which calls with different bandwidth requirements are accepted; in both cases, the data
may be transmitted at a lower rate than that of the voice traffic. Moreover, our methods
can handle voice models with periods of activity and silence, in which data is trans-
mitted during the silent periods of ongoing voice calls. Finally, our methods are applicable
to variable-rate traffic voice or video; in these situations the rate of the source can
assume a number of different values (from a fixed set) as time varies. Our preliminary
results actually show that our approach (based on the knapsack approximation) is appli-
cable to sophisticated Markov-Modulated Poisson Process (MMPP) models for the
variable-rate voice or video traffic with only a small increase of computational complex-
ity. In this context, besides variable-rate voice, video telephony as well as full-motion
video sources can be modeled and networks with such traffic can be analyzed.

12.3 Application to Control and Optimization Problems

Besides employing these approximation methods for the accurate and time-
efficient performance evaluation of integrated multi-hop radio networks (and of more
general multi-rate networks) we can use them for control and optimization purposes,
because of their computational efficiency. The recommended general methodology here is
to use an accurate and computationally time-efficient approximation (e.g., knapsack) to
evaluate the specific performance measure(s) (single measure or multiple measures in a
weighted sum) of interest and carry out the minimization (optimization in general) with
respect to the most promising classes of controls. The controls derived will be near-optimal
in the sense that their performance will be very close to those of the really optimal ones
that are derived from the optimization of the exact performance measures.

In particular, we have shown (refer to Table 20) that threshold policies for voice-
admission control that minimize the knapsack-evaluated probability of voice blocking
improve substantially the performance of the controlled network over that of the network
without admission control and actually come very close to the performance of the optimal
thresholds (which minimize the actual voice blocking probability). Without these compu-

tationally efficient accurate approximations to the performance measures of interest, the
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derivation of near-optimal control schemes is not feasible and one has to resort to ad-hoc
designs.

Moreover, the sensitivities of suitably defined voice and data revenue measures
with respect to link capacities (or number of node transceivers), voice loads,
and data loads were evaluated via the knapsack approximation and shown to be very close
to the actual values (refer to Tables 21 and 22). Again, these approximate sensitivities are
much more computationally efficient than the cumbersome (and usually prohibitive) exact
expressions. Actually, as our results establish, there will be almost negligible loss in revenue
when these approximate sensitivities are used in place of the exact ones. Consequently,
important practical problems of allocating additional network resources in response
to increasing voice and/or data network traffic demand can be easily handled with our
approach, as well as problems of data routing in which the derivatives of the data delay
(or the probability of queueing) are used by standard optimal routing algorithms.

12.4 Application to High-Speed Networks

The approximations to the probabilities of voice blocking, data queueing, and the
average data delay developed in this report can be also applied to important problems in
the area of high-speed networks, with proper modification. These include:

(i) algorithms for the set up of virtual paths for video, voice, and high rate data sources

in asynchronous transfer mode (ATM) networks.

(i1) schemes for admission control of different classes of traffic in ATM networks, and

(iii) specific formulations of the problem of multicasting hierarchically encoded data to
destinations that can receive subsets of the transmitted signal according to their band-
width and access constraints.

In all such high-speed network applications, the approximations of this report are expected

(after suitable modification) to provide both accurate and time-efficient performance eval-

uations and to be used for deriving near-optimal control schemes and resource allocations.
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APPENDIX A
Proof of Part (a) of Proposition 3.1
(System Steady-State Distribution)

The starting point is the chain rule for the steady-state probability of the voice state
(M3, Np), namely

P(N%,Np,nf) = P(Np,Np)- P(n{|N3,N5). (A-1)

Since voice has preemptive priority over data, the analysis of the voice component can

be isolated from that of the data component. Consider the voice state vector (Np,N3p);

denote
ﬂ;’t = (n},... ’n;-lvn; +1,n4,,... ,n;’,,l)
—N-;’; = (n;v'-- an;_pn; - l,n;+1,.. . ,nrpl)
N =(nl,...,np_np + 1,04y, 00p))
p;=(n:,...,n’_,,n —Lngiys---1nyp))-

The global balance equation for (N3, Np) is

v ] s, 0 v 8 v v L L v a v ﬂ —
P(Np,Np)- ; [n,p, +(ny —np)uy + (np —np)a+n, 8+ Fy P + F} m] =

v v B
= 3 [P 5 B o+ PSS 3) - F g

PG‘P

+ P(Np,N. ) (np +1)8+ P(Np,Np,) (n, —ny,+ 1)a

FP(NSE,N5E) - (m + 1)y + PG N5) - (np = mp + s (4-2)

for all (N3, N3),(N5;,N5;) € Q.
The local balance equations for (Np,N3) are
P(N3, N3) - npup = P35 N55) - Fy g (4-3)
PN, N3) - () = mp)ug = P35, M3) - F =2 (4-1)
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P(N3,N3) - (n} - nj)a = P(N3,N3,) - (n) + 1)B (4-5)

P(N3.N3) - njB = P(N3, N3;)(n; — 3 + Ve (4-6)
v L) 1 a v 8 v

P(N_P’_‘P)'Fpa+ﬂ = P(.N_P.;a.ll‘;;)(n,'{” l)l-‘p (A—7)

P(N3,N5) F i = PO, N5) - (ny +1-mpy (4-8)

for all (N3, Np), (N3;.N5;) € Q.

p)=—Pp
It is straightforward to show that the P(N%, N3) provided in Part (a) of Proposition
1 is a solution to the above local balance equations. Any solution to the local balance

equation must also be a solution to the global balance equation and, as P(Np,N3p) in
Part (a) satisfies the balance equation, it is the steady state probability.
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APPENDIX B
M/M/c and M/D/c Data Models
This appendix reviews all important formulas of the M/M/c and M/D/c data models
and sketches the relaxation method proposed by Tijms [13] for the evaluation of the steady
state probabilities and other quantities of interest for the M/D/c model.
B.1 Useful Expressions for M/M/c Data Model
The steady-state probabilities satisfy the recursion

Apj—1 = min(j,c)ppj, Jj=12,.

and are given by the expressions

p; {(c:))pfh j—_-o,l,--.,C—l,
J = .
dlope, j2¢

where

-1
(cp) (cp)*
S )

k=0
The probability of finding the system busy (blocking probability) I, = P{j 2 ¢} =
3= pj is given by

I -Jﬂ_{f(c”)k+ (cp)* }-1.

Y7 el - p) oot k! c(1-p)

The average number of customers in the queue E{N,} = E;’;c( J — ¢)p, is given by

-1
(co)p [ (cp)* | _(cp)
E(Ng) = cl(1-p)? {Z gt c!(l—p)} '

k=0

Finally, the probability distribution of queueing delay (i.e., waiting time, not including

service time) W, is given by

00 Jj—c k
cuzT - _
PIW,>2) =Y gy Y el —qmemaione, 2z
J=c k=0
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and the average quencing delay is given by

Bw,) < £ _ __(ep)* {f(cp)* (co)* }

A cleu(l - p)? c(1-p)

B.2 Useful Expressions for M/D/c Data Model
The steady-state probabilities satisfy the following equilibrium equations

po(t+ D) = Tm(t)e’”J

k=0
and
' C+J —k+c
- \ AD _ap (AD)Y~ .
pi(t+ D)= p(t)e *P_ 4 x(t)e ‘\D-—————, 721
44+ D)= 3 S+ 3 T

where D is the service time.

From those we can derive the recursion

] +J }—k+c
_Aap(ADY S —ap (AD) :
= — E E ——— | =0,1,...
pJ e ]! k=opk + k=c+lpke (] _ k + C)! J

where

ZPJ‘I

The average number of customers in the queue can be also derived as

(cp)? — (e — 1) + Tiobfelc = 1) - §(j - V)}p,

BN = 2¢(1 - p)

and its second moment as

(cp)® = cle = 1)(c = 2) + 5 p{clc — 1)(c = 2) — j(j = 1)(§ — 2)}p;
3c(1 - p)

E(Ny(Ny - 1)) =

c—1—cp?
_.(.TTPJE(N{).
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B.3 Relaxation Algorithm for Evaluating Steady State Probabilities of M/D/c
Data Model

The above recursion for the p;’s can not be used directly to find the p;’s of the
M/D/c system because it is equivalent to an infinite system of linear equations. Thus we
first truncate it to a finite system by using a sufficiently large integer i. chosen so that

e ] [ <}
£ < S <00
j=L j=L

where p;xp for j = 0,1,... denote the steady state probabilities of the M/M/c system,
which are available in closed form (see Section B.1 above); the inequality reflects the
intuitive fact that the M/D/c queue involves less variability than the M/M/c queue.

It turns out (see [13]) that for light traffic it is preferable to use the truncation to L
terms described above. However, for non-light traffic, unacceptably large values of L may

be needed. In this case it is advantageous to use the theoretical fact [13] that

Pj—.l =7 for all sufficiently large j

P

where

T=14+6/A

and § is determined as the unique positive solution to the equation
MefPle—1)=6

This asymptotic result is exploited in the following manner: for all j such that 0 < j < N
we use p; and try to determine their value from the system of linear equations; for all
j > N we use

p;~tN-ipy for j>N

where N > c. It turns out (see (13]) that the necessary value of N is smaller than the
necessary value of L (of the previous paragraph). The procedure for obtaining the p;’s is
sketched next (following [13]).




After truncating the linear system of equations involving the p,’s to an (N+1)x(N +1)
linear system and replacing the probabilities p; by pyTV¥~J, for j > N, we obtain the

following system of linear equations:

N
Pj =Zajkph j=01,...,N

A=0

k#j
with
N T
ij-i-;_—_-_—l-pzv =1 (16)
=0
where
( i .) °k+ . - . .
r axnll:((;{i’n(,,c)c)))’ 0<j<N-1, 0<k<min(c+j,N-1)
ets ,-N'hﬂ(j-k+c) . .
PG N-c<j<ii-1, k=N
Gk = ¢
a(minGj—k+e)) . . _ _
1-3 i TN ta(i-k+c)’ j=N, 0sksN-1
L 0; otherwise
Here,

a(€) = e *P(AD)Y/8!, for £> 0.

The above system of linear equations is solved via the modified successive overrelaxation
method of Tijms [13].

According to the standard successive overrelaxation method the operator B, associ-
ated with a relaxation factor w transforms each vector z = (z9, zi,...,Zn) into the vector

B, z, whose components (B, z); are defined recursively by

i-1 N
(BUJ:).' = (1-w)z,-+w Za,-,-(sz)_,-+ Z ai;z; i=0,1,...,N.
=0 =i+l

Assuming that the integer N is sufficiently large—so that the reduced system of linear equa-

tions has a solution—then this solution is an eigenvector of B, with associated eigenvalue
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1. Letting \)(w) be the eigenvalue having the largest absolute value among the eigenvalues
of B, unequal to 1, the standard successive overrelaxation method with a fixed relaxation
factor w converges only if |A\;(w)| < 1. Moreover, the standard overrelaxation method has
the best convergence rate for that value of w for which |A;(w)| < 1 is smallest. It should be
noted that the optimal value of w may be rather sensitive to the parameters of the specific
problem considered and, in some cases, will be close to 1. |

The problems of the standard overrelaxation method are avoided with Tijms’ algo-
rithm [13]. In this algorithm w is always kept between 1 and 2. In case A;(w) is real,
the algorithm estimates A;(w) after some iteration of the overrelaxation method (see the

k in the algorithm below). This estimate provides a method to formulate a

parameter r
successive overrelaxation algorithm, in which the relaxation factor is dynamically adjusted
in order to search for that value of w, for which |A;(w)| < 1 is smallest. The steps of Tijms’
algorithm for the calculation of the state probabilities in the M/D/c queue are provided
below.

Special-Purpose Overrelaxation Method for the M/D/c Queue
Step 0. Choose N > c and z° > 0 with

N
Zz? +7r(r-1)"1z% =1
=0

Also, h := 0 and w := 1.20.
Step 1. w°¥:=0, A(w°?):=1, f:=r* := 0.
Step 2. h:= h + 1. Compute the vectors

ih = Buz’l—]

N -1
- T ~h ~h
= A I
[_Z 188 + —— IxNI]
1=0

and the scalar

":’

II
2,[\’1z

"" 8:




If f* < en, with ey a prespecified accuracy number, then go to Step 4. Otherwise

A
rb .= i
Ji
Ifr*» > 1 or h > 10, then w is likely too large and decrease w, as w := 1+ %(w -1),
put z° := z* and h := 0, and go to Step 1. If r* < 1 and r* has sufficiently converged,
according to |(r* — r*~1)/r%| < 0.025, then go to step 3; otherwise, return to Step 2.

old

Step 3. Aw) := r*. Test for one of the following four possibilities: (a) w > w®* and

AMw) > Aw!); (b) w > w°! and Aw) < Mw®); (¢) w < w°!¢ and Mw) > \(wold); (d)
w < w°? and A(w) < Mw°'?). For the cases (a) and (d),

W= w, Aw):=Aw), w:=1+0.85w-1)
whereas, for the cases (b) and (c),
W= —w, Aw?) = Mw), w:i=1+125w~1)

Next, z° := z*, h:= 0, f* := r* := 0o, and then go to Step 2.

Step 4. If
N - .
~h ~N -5
I,-Ezoxi +‘r—-1z" -1{<10
and

c-1 c—1
'Zizf +c (1 - sz’) —cp| <107

=0 1=0

then the algorithm is stopped and the state probabilities p; are obtained from

N-1

pi=z" for0<i< N andpi=7 zh fori > N.

The above stopping criteria use the fact that the probabilities sum to 1 and that the

average number of busy servers equals cp. Otherwise,

a:‘-’-::t? for0<:< N and x?::;l'—zg-l for N<i<N+10

95




N := N +10, h := 0, and then go to Step 1.
B.4 Recursive Algorithm for Evaluating the Probability Distribution of Queue-
ing Delay under the M/D/c Data Model

To compute the probability distribution of the queueing delay W,, that is P{W, < z},
we first find an integer m and the remainder u (0 < u < D) such that

z=mD + u.
Then we obtain the desired quantity from

where the bj(u) satisfy the recursion
Au

Zp, Zb - (u)e"\"( ) , for 7=0,1,...

=0 k=0
with initial value

bo(u) = €**po.
Actually, for computational purposes the following recursion is preferred
Au (- Au) —k .
’z—:op, ;)bk(u) a1 for j=1,2,...

or equivalently

uy-1-k
bj(u) = e*p; — Zbk(u)( —A )J ) (j'\_u —1), for 7 =1,2,.

The above recursion should be used in combination with the approximation
P{W, > z} = ae~%* for z > D/+/c.
In the above approximation § is again determined as the solution to the equation

MefPle—1)=6
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and a is given by

bn
“= At = 1)2re-1
where
r=1+ %
and
n = lim r'p; = Y Pt = )
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APPENDIX C
Proof of Proposition 5.1
(K‘napsack Approximation)
From the proof of Proposition 3.1 we know that P(N",N°®) satisfies several local
balance equations. But actually the first two of them are sufficient for solving P(N*,N*).
For the same reason, the following two local balance equations are sufficient for obtaining

P(k,m)

a

S PN NG = mP(YL ), gy 2 1 (€-1)
———B *P(N}~,N2)=(n) —n2)P(N",N°* »21 c-2
a+ﬂp}’ 4 ’—p)-(np_np) (_ AR )1 Tlp_ ( - )

where we have dropped the subscript P in N3, Nz, and in the other vectors in order to
simplify the notation; as usual, pp = Fp/uy. Summing both sides of equation (C-1) with
respect to (N”, N*) € Q(k,m), one can obtain

«a — are—y
oy 122 > PN™,N*7)= ), mP(°,N') (C-3)
(ﬂ"'l_v.')en(hm)n{":v";zl} (NY,.N*)eQ(k,m)
where

Qk,m)N {ny,n; 21} =
= {(N",\N°[1<n) <nl, r,<rpnt <, 0<n) <ny, 0<rgny < ety ¢,p € Prg # p;

Z Tghg +1p(ny, — 1) =m —rp, Z rgng +rp(ny —1) =k —rp 5.
9€P1.0#p 9€P;.q#p

For the RHS of (C-3) we used the fact that, if nj = 0 then RHS = 0 and if nj = 0 then
ny = 0 and thus RHS = 0. If we define




and replace (ng,ng) by (f,7;) in the LHS of (C-3), then Q(k,m) N {n¥,n% > 1} =

Q(k — ry,m — r,) with the new variables and we can rewrite the LHS of (C-3)

a v
mp,?(k - Tp, M —1p).

Moreover, we can rewrite the iiHS of (C-3) as

Z n'f(_ﬁ_"’___lv-.lp(k,m)_

P
e neakm L Em)
Note that
P(N",N*) v
P(N®,N'| Y rgny=m, 3 rnt = k) = {-#zr:s- (A", N) € k,m)
q9EP; qEP, 01 otherwise
Denote
E[n;lk, m] = Z Tl; . P(Ev,.]_v_a Z an; =m, Z: rqn;’ — ’C)
(N, N*)eR(k,m) gEP, gEP;

Then the RHS of (C-3) becomes
E[nglk,m]- P(k,m) -

Equating the modified LHS and RHS of (C-3) we have

-~ _‘: 50y P(k = rp,m = 1) = Elnjlk,m] - P(k, m), (C —4)

Following similar arguments, we obtain

s ﬂp;P(k —rp,m) = E[ny — n;|k,m]- P(k,m) (C -5)

from equation (C-2). Multiplying equations (C-4) and (C-5) by r,, summing with respect

k,m} =m

to p € P, and using the facts that

E{g,,,n,-,

PEP

99




and
E z: rp(ny—np) [k,m ) =k—-m
PEP;
we obtain
= Y Pk -rpm =) =m-P(km), r,Sm<k<a
PEP;
and

8 Z rpppP(k —rp,m) = (k—m)-P(k,m), 0=m<r,<k<a.

Finally, by defining
P'(k,m) = P(k,m)/P(0,0)

we derive (5.10a) and Proposition 5.1 follows.
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APPENDIX D
Four-Dimensional Knapsack Approximation
(Proofs of Propositions 5.2 and 9.1)

In this appendix we provide the recursion for the computation of the four-dimensional
knapsack approximation used for evaluating the probability of queueing of data and the
average queueing delay of data (Sections 5.2 and 7.2) and for the probability of voice
blocking with admission control (Section 9). We present the proof only for Proposition
5.2; Proposition 9.1 follows as a special case of 5.2.

Here we provide a recursion for P(k,,m;, k2, m2) defined as

P(klvml7k27m2)= Z P(ﬂv,ﬂ’)
(ﬁ"'-N—.)en(klvml »k:,mz)

where P; for i = 1,2 are two arbitrary sets of paths, with P, # P,.

0<m; = Z rﬁ,i)n;_<_ki, 1=1,2.
PEP; '
Notice that these inequalities can represent any constraint involving a linear combination

of the number of voice calls n} of all classes p € P;. The coefficients r;,i) (1 = 1,2) may be
equal to the rates r, or may be arbitrary non-negative constants. For example, Z; = ¢;

(1) (2) (s)
P P

and r =rp corresponds to the scenario of Section 9.1.

= rp whereas Z; =T, and r
Also the general case of unequal rates r;,‘) of path p under the two constraints : = 1,2 (i.e.,

ri,l) # rﬁ,z) ) can be handled by our analysis. Finally, Q(k;,m,, k2, m2) is defined by

Qky,my, k2, ma)={(N " N)0<n) <nl,pe P=PyUP; Y rini=k,
PEP;

(s 0 5 —
er np_m,,z—1,2
PEP;:
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Z, ki 22 k3

Z Z Z z P(ky,m,,k3,mz) = 1.

ki =0m; =0 kgm0 ma=0

The starting point is to consider the first two of the local balance equations for P(N*, N*)
given in Appendix A, namely

PLP(N;™, N2™) = ngP(N",N*), 53, n}>1)

0+ﬂ Seep P r

and
B ep(NU- N?) = (n? —n®)P(N®,N*), n®3>1
at gl ) =My TS L) T 2

where we have dropped the subscript P in N. ;’r’ N3,, and in the other vectors in order

to simplify the notation; as usual, p; = Fp/u;. After summing both members of these
equations with respect to all (N°, N*) in the set Q(k,, m;, k2, m2) defined above we obtain

¢ - 8- s
oy 124 ) P(N*",N*") = ) nsP(N",N*)
(NY,N*)EQ(k1,my k2,m3)N{n},ns 1) (NY.N*)ER(ky,my k3, m2)
(D-1)
and
__.ﬂ - v 8 v a
pr e ) P(N*",N*) = 3 (ni-ng)P(N", N*)
(ﬂ" 9_N..)€n(kl my 7k2|m3)n{n;'";21) (ﬁvyﬁl)en(kl Jmy -k2|m2)
(D-2)
where

Qky,my, kz,m2) N {ny,ny > 1}
= {(N",N°) . 1<n,<n,, 0<ng<ng; g#p, g€ P;

> rng (g - I(p € Pi)) =mi — ) I(p € P)
9€Pi q#p

Yo Ol rnp —IpeP))=ki—rPI(pe P, i= 1,2}
qepl -G#P
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The LHS of (D-2) becomes

a
a+ B

py P(ky =V I(p € Py),my —rMVI(p € Pr), k2 — r®I(p € P2),maz — P I(p € P,))

Note that if m; = 0 then p ¢ P;, (since m; = 0 implies that ny =0, Vp € P;). The RHS

of (D-2) can be written as

PN°,N°)

> n;
PPk k
(NY,N*)EQ(k1,m, k2, m3) P( 1,7, 2’m2)

P(kl’mlv k?vmz) )
where

pEP;: PEP;

P((LV_”,_N_‘) ! z r:.‘)n;=kiy Z r;,i)n;:m,',i = 1,2)

1,my,k2,mz)’

(it i et
0; otherwise

Since the RHS has thus taken effectively the form of the conditional expectation of n;
given (k;,m;, k2, mz), by combining the RHS and the LHS we conclude that

a
a+pf

o} P (k, ~rVI(p € Py),my — vV I(p € Pr),ky — P I(p € Pr),mz — rPI(p € “pz)) -

=E[n;l(klvml’k27m2)]’P(klamlvk2am2) (D'—3)

From equation (D-2) we can obtain in a similar way the equation

——ﬂ v (2)
popr 12 24 (ks = rOI(p € Pr),my by = 1P I(p € Po)ym) =

= E[n; - n;l(klamla k?am2)] : P(kl3mls k21m2) (D - 4)
If we multiply equations (D-3) and (D-4) by rg,i) and sum with respect to p € P;, for

t = 1,2, we obtain
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P(klsmhkzam2) =

1 ) 1 1 1 2

my °:3[EP€”W’§'P byP(ki=r3 Imy—r} v"%mﬂ'*{:pevmzﬁ(v )PpP (kr—rfm—ri k= r{Pmy—r ))]
if r},l)<ma sk L2, )<m2<k2<Zg,
1 1

vy [E,ermw 5 P,P(k —rM,my -1} );kz,mz)] ,
if 1) <mi <k <21,0=my < k2 < 2

2

T otB [Zpevlnre Tp P,P(khml,kz - ) mg —r} ))] y

if O—mxﬁklSzl;rgz)ﬁmzskzﬁzz; (D ~5)
1)

E“l"‘i ;"% [Eremn?‘rt’ P;P(kl"'r ymy; kg, m2)+2,€,,m,,2r§.”p;P(k "r L my kg - 7‘ mz)]

if 0= m1<r)<k1<Zl,0 m2<1‘()<k2<22,

if ky=0,m; =0,k =0,m,=0

if k;,m, are not positive integer multiples of r;,”
or ki, m, are not positive integer multiples of r?)

which provide the desirable recursions for evaluating P(k;,m;,kz,mz2) for all

(k1,m1, k2, my) after performing the normalization

P'(kl,ml, kg,mz) = P(kl,ml, kz,mz)/P(0,0,0,0).
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APPENDIX E
Proof of Proposition 6.1
(Pascal Approximation)

When ¢ = oo, we may rewrite equations (6.7) as

A WS - =0; 1<k<
Pk, m) = A—l}—P(lc 1,0), m=0; 1<k<o0
=2zl Pk-1,m-1), 1<m<k; 1<k<o
where
o k .
YN P(k,m) =
k=0 m=0
To express P(k,m) as a function of P(0,0), we write
h-lA i
ime " . P(0,0), m=0;1<k<oo
™me— k=ma=1l
P(k,m) = Ha.n__ﬂaﬁn_;;*_ P0,0), 1<m<k-1,2<k<oo
I 2 po,0), m=k1<k<oo
and equation
oo k ) '
>N Pk,m)=1
k=0 m=0
becomes
oo k-1
00)+ZP(k0)+ZP(kk)+ZZP(km)_1
k=1 k=2 m=1

which results in

1+zﬂ'—° z“-—o {1y Y e tea =S| p0,0) =1

Let




for j = 1,2. Then by definition,
'\j,i = a; +i-bj

for j = 1,2. After certain manipulations, we have

k— k— oo k-1 m- k—m-—
1+i (U.—-ol Mi H.=ol Az, :) +y > u-ol"\'hi e A

k! ] e (k —m)!

oo k~ k-1
= (1 +y n",‘c’l,’\ ) (1 + Z H'-° A, ')
=(1- bl)—dx/h (1= bz)-"/"

Then
P(0,0) = (1 = by)*/* - (1 = by)2/™
Consider the moment generating function
oo k-

E[T*S™] = P(0,0) + Z[P(k )T + P(k,k)T*S* + 3 Z P(k,m)T*ts™

k=1 k=2 m=1

= P(0,0)- [1+Z(H-—o(’\“ T) l'l.-o(Az. T. 5))

k! k!

o0 k=1 pym-—1 k-m-1
- (/\ i-T-5) H,_ (A1, - T)
+ZZH S (Ek-—ml)! ]

k=2 m=1

Note that
/\1,.--T=al T+, -T

/\g,i-TS=ag-TS+ib2-T'S.

Therefore,

1- bnT)'* (1_—_6215.)'**

komy _
1=3{T.s‘]_(-———1_bl —
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Then the first and second moments of k and m are

E[k — m] = E[k] - E[m] = dE[T*S™] _OE(T*s™|
T=S=1 95 T=S8S=1
- az a; K.
- (l-bz +1-—b1) =&
“1-b v
OE[T*S™)
.Ebn]:-—_?ﬁr__
T=S=1
a2
= 1__b2==€m
_(a§+azbz+ az )_( a2 )2
“\U—ey TO-)  \U-&)
= ey =%
m k om
var(k —m) = '6'2'%[?1:_5‘] ‘262%5_] +var(m) + E[k] - (2E[m] - E[k])
T=5=1 T=S=1
4 =q2

T a-b)
cov(k — m,m) = E[(k — m)m] — E[k — m] - E[m]

_ BE[T*S™)

= —3753 —E[k}E[m] — var(m)

T=S5=1

=0.
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APPENDIX F
Proof of Proposition 6.2
(Pascal Approximation)
For the single-link, multi-rate, infinite capacity scheme, the steady-state probability
of voice P(N",N*) in Section 3 is

v A7y _ l ) (P")n; a";ﬁn;—n;
P N*) =& ’161 n,‘,!(ng- )l (a +B)

where
c= ¥ [ e
) n3ing —mp)! (a + B)
0gny<oc  PEP ) A 4 | 2o
OSn;Sn;,pG‘P

and it is approximated by

(o)™ ams g
G= H Z n2linz —n3)! (a +B)™
PEP ognfgoo A p/

0<n;<n3

which means that the voice states of the different paths are assumed mutually independent
in this single-link analysis. This is motivated by the same interlink blocking independence

assumption discussed in Sections 4.1 and 5.1. Therefore, we may define

BN, N°) = [] pn}.m})

PEP
where
vyn® a"? 8" ="
P(nying) = (p:.l(’nu(‘.xj:i;;; ' 'Gl_
PP pr P
and

] v ]
nY a"P B8P "p

Z (P; ? (a+8)n}

nsl(ny — n3)!

G, =
OSn;Sm
0<ni<nj
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In the following we use P(N",N*) instead of P(N",N*) and P(N") instead of P(N®)
to distinguish the approximations from the exact values. Next we evaluate the first and

second moments of (N°, N*) as follows

Efn= ), Y rmnp- PN = D ) rpnp- B(N)

0<ny<oo peEP 0€nJ<oo pEP
0<ni<ny,pEP peEP
where
v v
X (o2 (o2)"
Py = |II487| /| = 1487 = [ otnp)
peEP P’ 0gny<eo pEP P’ peEP
PEP
and

-1/ | 3 %]

P(N?) is the approximate steady-state probability of state N”, where the state vector N°
represents the number of channels occupied by voice taking path p, for p € P. Combining
these results yields

E[n,] = Z Z rpny H p(n,) = Z p E n; p(ny) = Z TpPp

0<n* ‘o0 pEP pPEP PEP 0<ny<oco pEP
pe?

and similarly

Enl= 3> e [lempmp) =3 m D nppingimy).

0gny<oo  PEP pEP pEP 0<nY oo
0<nj<ny.pEP 0<n;<ny

Note that using the definition cf p(njy,n;) above we can express n; - p(ng,n;) as

’ v ’
)n;—l Q"P-I Np="Np

(p; (a+ﬁ)ﬂ’—l apv 1
ns - p(ny,nd) = . P
P PP (ny —1l(np—n2)! a+8 Gy
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and thus through summation obtain

> mpnpm)= Y

0<ni<eoo 1En <o
0<n;<n} 1<n;<ny

Therefore,

o v
E[n,] = a+ﬂ§p"ﬂ’r

Qa
nyp(n,,n,) = ml’;-

Since n, depends on N* but not on N*, we can use directly the result of [6] for voice-only

traffic (without silent periods):

var(n,) = Z r,,(p;’)z.

PEP

Moreover,

Enll= ) |X remp| PN
0<n <00 pEP
0<n} <n",p€‘P

z Z r:n;z z Z r,n;rqn; P(LV_",_N_’)

0g<ny oo pEP PEP ¢€P
0<n2<ny pEP 9#p

_Zr, Z 22 p(np,np)+ZZr,rq Z Z n’

PEP 7P

PEP o0<n¥<oo
ni<ny 9¥#p

0<n:<oo 0<n“<oo
0<n'<n"0<u' <n"
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Then, since

2

OSI;SQQ
0<ni<ng

ns?p(n3, nt)

=) (n

ISN;S«»
1<ni<n}

and

Z Z nyn

0<ng<oo 0<n <o
0<ni<ny 0<ns<ny

we obtain

n’-1 a'l;-l np-ng
pp’ er 85 '

(a+8)"?

v
ap,

1+ 1)
P

ﬂ h | a"’-l !-’-n;

+(a+ﬂ”))

osn"'SQ
L4 v
0<nj<ny

«a

1

1)}(ng — n})! ‘a+8 G,

(P')" ~1a"27 g%~ >

— pv. a pv
a+pf'? a+p?

q#p

; .P(n;, n;) -p(n;’,n;) = Z n; .p(n;,n;) z na

Z Z rPrqpppq

PEP ¢€P

(atp)"r" (a+8)"?~
(" +
‘<"Z<°° = 1!(ng —n})! xsnz;:s«» (ny —1)Y(np — n3)!
1<n‘ <n3 1<ns <ny
n:—z o-;-: n:—u;
Z Py (atB)"?"" . Pl + Gyl - 1
riortw (= DMmp—m)! at BT G,
| 250 <n;
a )
.41 + v
( a+ ﬂp P )

: p(n;,?n;)

os.e
IA u\

o<n
O<n :’

(%)

1

G,



From the above expressions for E[n,] and E[n?] we can easily derive that

var(n,) = E[n?] - (E[n,])? = }: r2pt.

Similarly, we can write

2
E[(ny-n,)]= Y (z ra(ny - n;)) P(N°,N")

0gn)<oo PEP
0<ns<n}

=32 Y (np—n})ping,np)

PEP  ogayge

0<ni<ny
v ] v 8 v L v  J
+ Z Zr,r, . Z (np — np)p(ny,ny) Z (ng — ng)p(ny,ny)
PEP ¢€P 0gny oo 0gnY Soo
P 0<ns<ny 0<ni <ny

and since
(pp —1)= L ;-";:l B 1
v N2/t ,.8 v s P {a+8)"»"
- ,n®) = —n® -1
osg;”("r np) (np,np) lsg:sn (np—mnp—1+1) (na)(ng — n3 - 1)! a+ﬂpr G,
OSu;'sn; Ogn;gn;-l
[ ppr et g g
! p =3
= (atB)"r B G o 1
X mm-n-Diatp? O TG,
0<n} <ny—2

we derive that

and conclude that

var(n, — n,) = El(n, — n,)?] = (E[ny — n,))? =
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Finally, we write

Efny-nl= ¥ (Zr,n:) (Zr,n;) P(N*,N*)

0Snygoo \pPEP
0<ny<n3

— 2 v,.8 v 8 s v .8 v v
—Er, Z nyng n,,n,)ZZr,r, Z n,p(n,,n,) z n'p(n',n')
PEP  o0<ny<oo pEP P 0<ny<oo o<y goo
0<ns <ny 9#p 0<ni<ny 0<n;

and since we have that

pn; a"; np="3
a P (a+8)"r 1
nlln. nv’na — v. v 1 . —
o ) = e | 2 O Vg |
Os.n;,gn; ls-n;,gn"'
=2 v Y ngp(n?)+1
a+ 'B P P 4
0<n}<oo
a v L
= 1
agp Prites)

we derive that

a - a
Blno -l = Y rhS50h 460 2 Y rare o

pEP PEP ¢€7P
9#p
2
a Z 2 v a v
rFp PFp
o o
+ﬂp€‘P +'B pEP

and conclude that

cov[ny,n,] = E[n, - n,] — E[n,] - E[n,] = = i 5 Z 2P}
peEP

Consequently, since
cov(n, — n,,n,) = E[(n, — ny)n,] — E{n, — n4) - E[n,] = cov(n,,n,) — var(n,)
and as we established above cov(n,,n,) = var(n,), we also obtain that

CO’U(n', - n,, Tl,) = 0-
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APPENDIX G

The Knapsack and Pascal Approximations to
the Probabilities of Voice Blocking and Data Queueing
Are Identical for Networks with Single-Rate Traffic

In this appendix we prove the validity of the claim made in the title. We show that the
knapsack and Pascal methods provide identical approximations to the main performance
measures of this report: the probability of blocking voice (Section 4) and the probability
of queueing data (Sections 5 and 6). The same is true for the average queueing delay of
data (Section 7), as well as for the probability distribution of the data queueing delay, but
we omit the proof since it resembles the one for the probability of data queueing.

The single-rate case is characterized by
rp=1 forallpe P

where 1 is the required data rate (bandwidth) of voice; the required bandwidth for data is
then 1/r (where r > 1).
G.1 Probability of Voice Biocking for Single-Rate Traffic
Knapsack Approximation '

In the single-rate case, the recursion of equations (4.6a)-(4.6b), which provides the
weights necessary for the knapsack approximation to the voice blocking probability of
(4.5), reduces to

w(n) =

S|

(Z p;) win-1) for n=1.2,...,¢.

PEP;

Pascal Approximation
In the single-rate case, the recursion of equations (4.11b)-(4.12b), which provides the
weights necessary for the Pascal approximation to the voice blocking probability of (4.13b),

reduces to

An—l )

gd(n)=—¢'(n-1) for n=1,2,...,¢
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where
2

Anot = -3;+(n—1)(1--;‘;)
with

e=E{n} =) ro}=) 5

PEP PEP,

and

o? = var{n,} = Z r2py = Z Py

PEP; PEP,

Since € = 0%, \,_, simplifies to

A1 =€= ZP;

PEP:

resulting in

¢'(n) = % (Z p;) ¢'(n-1).
pEP:

Since as we know

w(0) =4'(0)=1

comparison of the above simplified recursions for the knapsack and Pascal approximations

shows that they are identical, that is

w(n) =¢'(n) for n=0,1,...,¢.

Therefore, since the form of the approximations in (4.5) and (4.13b) is the same except

for the w(n) and ¢'(n), the two approximations coincide in the single-rate case.

G.2 Probability of Data Queueing for Single-Rate Traffic

Knapsack Approximation

In the single-rate case, the recursion providing the quantities P'(k,m) of (5.10a) in-

volved in the knapsack approximation to the probability of data queueing given by (5.9)

0=m<k<uq.
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Pascal Approximation
Similarly, the recursion providing the corresponding quantities P'(k,m) of (6.7b) in-
volved in the Pascal approximation to the probability of data queueing given by (6.21)

reduces in the single-rate case to

- Aamo1/m)P'(k=1,m-1) 1<m<k<q
P k, = ( 2 1 A
(k,m) { (Arx—r/E)P'(k - 1,0) m=0
where
62 €2
A2,m- =—2+(m—1)(1——)

2 1 ag ag

with
4] [ ]
e =E{m}=E{n}=—= rpj=—= 5}
a+ﬂ?€7’: a+ﬂ?€1’a

and

2 a 2 v a v
o; = var{m} = var{n,} = —— E roPp = Z Pp-
e a+h

Since €3 = 02, A2, m-1 simplifies to

a
A2m—1 =€ = Z Pp-
a+p PEP:

Similarly,
2
_&a _ _8a
Al.k—l = U? + (k 1) (1 0?)
and since
B v B v
e =E{k—m}=E{n,}=—— Y rppp = > o
O+BP€'P4 a+ﬂP€7’r
and

7} = varlk - m) = var{n} = 2= Y sl = L 3

PEP PEP,
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imply that €; = o2, A x_; simplifies to

B
A1 =€ = Z P;-
at+p =

’
Using the above simplified expressions for A; k_; and Az ;- in the recursion for P'(k,m)
results in an expression whose functional form is identical to that obtained for P'(k,m)
in the knapsack recursion earlier in this subsection after the simplifications. Since we also

have that
P'(0,0) = P'(0,0) =1

the knapsack and Pascal recursions are completely identical and thus
P'(k,m)= P'(k,m) for al0<m <k<q.

Moreover, since the expressions providing the approximations to the probability of data
queueing in (5.9) and (6.21) have the same functional form for both the knapsack and
Pascal recursions, we deduce that the approximations in question are identical for the

single-rate case.
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APPENDIX H
Proof of Proposition 10.1
The starting point is the definition

ci—1

wi=3afef- Y PQ".N')- Y P(nflc)-I(c;>0)

lec (NY,N*)EN ni=0

= E P(E”,-]!') * wd(ldv_P_d’Q)
(Nv.N*)en

from which we obtain

awe _ 5 dP(N°,N*)

ap; (ﬂv ’-N_l)en ap;

Define

oS aripin
P ongl(ng —n2) (a+ B)™

and G(c) as in (3.3); then from (3.2) we have

P(N°.N) & 1 1 a5,
=o=J - . f + - f Rt
9y dp; G(c) ,,Ie-!, P 7 G(e) qeg#, ! Op}

Moreover,
oynt=1a"P 8" ">
of, P TeST .,
AT ey B A
oyt et e
a P R .
= . I(n2 >0
a+B (np—1)(np —np)! (ny > 0)
pun;’-l a™rg™r "t
B P (atB)™"" v s
. Iny —ns >0
T ath Tnai(nz—ng—1) (ny —np > 0)
and

0 1

(NY,N°)EN(g) gEPg#p
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3p3 Glc) -6 > I1 4 3;'

-wi(y4, 0%, 0).

v
P




Therefore

ow
i

=6l > Ilfw'@hete

(N*,N*)€EQ(c) pEP
N (ppyi-reiadisd
o, > | I f—iyms 1> 9

v,.N*)ER(c) | 9€Pe#P

[} [
)";_1 a™? np=ny )

(pp

L (a+8)"r""
¥ fa - I(n} —n§ > 0)
‘Hﬂ(ﬂﬁyg):en c GLI#’ n;!(n; - np — 1)! P P

_ (pps = 2B
e =g 2 | Il (n;_l),(;";fi’n;), I(n} > 0)w(7*, 0%, 0)

(N*.N*)EN(c) hePasp

ﬂ (pv)n;’—l a"; np-np=l
P (a+8)"?~ d;.d d
tm 2 (Il % s = =D > et €)

(NY,N*)ER() pEPe#p

The above expression can be put in the simpler form

ow4 a B
A=t >[5+ e T hviatete
O I e O ) ) ERREE
af_a 4
+607 |25 ©) + Z50)

where the terms (A), (B), (C), (D) are appropriately defined.

The term (A) can be obtained as

W= 3> [lf=06-rm)

(N*,N*)ER(c—rpe,) PEP
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In order to simplify (B), let us consider Q(c)({n} > n;}, which can be rewritten as

{(E",N_')IO <Y rny<al€L;0< ) rni< Y renligp,

qEP, qEP; 9EP:
0< Z r,n; < Z r,n:,l €ple L} =
gEP, q€EP,

= {(ﬂ”,ﬂ')lo < Z rgng <c,0 < Z Tqng < Z reng, ! & p;
9€EP: 9EP, 9€EP:

0< Z an: + r,(n; - 1) <c - 7‘,,0 < Z an; < Z rqn: + r'(n; - 1)’1 €Ep
9E€EP1g#p qEP; e€EP1g#p

N e

Therefore Q(c)({n; > np} for vector (N°,N°) is identical to Q(c — rpe,) for vector
(N~ N*), where N;™ = N —¢,, and (B) can be represented as

(B) = G(c — rpe,)-

From a similar argument as for obtaining (B) and from the fact that

’
ch=c= ) reng+ D rem;

qEP; gEP,

=(c1—rp) — E rgng +rp(np —1)| + Z rgng, lEp,
9€P1g#p qEP;

we can rewrite (D) as

(D) =G(c~ rpﬁp) : Wd(£ - rP-e-p)'

Also following similar arguments as in simplifying (A), we can obtain (C) as

(€)= > | | BTN O )

(N*.N*)ER(c—r,e,) PEP
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Therefore

ow
op}

=[G -Gle=rpe,)- Y, I fr-w'ahp'e)

(N* N)EN() PEP

R d.d d B d
+ [ > I1 freta’.et0) + G(c —rpe, )W (s—r,s,)]
G(c) a+ﬂ(ﬁ°,_1_\’_‘)€9(£-—r,£')p€”’ a+f

_G(Q""pﬁp){ B
) a+p

Wé(c —rpe,) — Wi(c)

a 1 d.d d
+a+ﬂ.G(£_r’£')- Z pr-!ﬂ(l’_e’.c.)}

(N* . N*)ER(c—rype,) PEP

B
a+p

—(- B,.){ Wé(c - rpe,) - W(e)

+ o7 S PN et Pl (e > 0))
a+p =r
NY.N*)ER(c~1pe,) lec

where
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PEP; PEP;
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Figure 1. Two-Dimensional Birth-Death Process Used for
the Pascal Approximation
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Figure 2a. The ten-node multihop radio network of [4]

cl aneae

[x)
w

Figure 2b. The five superimposed circuits on the radio network of Figure 2a
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C4=120 Co =100

C3=110

Figure 3a. The multi-rate star network of [3]

Figure 3b. The twelve voice circuits of the network of Figure 3a

and their bandwidth requirements
Voice Links Bandwidth

Circuit Used Required

1 1,2 1

2 1,3 1

3 14 1

4 23 1

5 24 1

6 34 1

7 1,2 5

8 1,3 5

9 1,4 5

10 23 5

11 24 5

12 34 5
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Table 1. Probability of Voice Blocking for Different Traffic Loads, Node Transceiver
Vector T = (8,8,8,8,8,8,8,8,8,8), Voice Activity Factor 8/(a + ) = 0.4,

and no Admission Control

Offered B
Voice Load | Exact Monte Carlo Knapsack Error
p° Value Summation Approximation | %

0.1 0.000000 { (0.000000, 0.000000) |  0.000000 -
0.5 0.000160 | (0.000096, 0.000224) |  1.000174 8.75
1.0 0.008654 | (0.008355, 0.009262) |  0.009802 | 13.26
1.5 0.047401 | (0.044829, 0.061187) |  0.053400 | 12.66
2.0 0.112365 | (0.107544, 0.121025) |  0.122152 8.71
2.5 0.183607 | (0.179594, 0.185808) |  0.194000 5.66
3.5 0.307931 | (0.302761, 0.316174) |  0.317236 3.02
4.5 0.401453 | (0.385203, 0.417037) |  0.411132 2.41
5.5 0.472130 | (0.434905, 0.514719) |  0.483226 2.35
6.5 0.527213 | (0.505836, 0.540619) |  0.539849 2.39
7.5 0.571417 | (0.546001, 0.603585) [  0.585356 2.44
8.5 0.607742 | (0.534647, 0.646869) |  0.622658 2.45
100 | 0.651634 | (0.616248, 0.705557) |  0.667461 2.43
15.0 | 0.745317 | (0.676021, 0.778351) |  0.761318 2.15
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Table 2. Probability of Voice Blocking at Each Path for Different Traffic Loads,
Node Transceiver Vector T = (8,8,8,8,8,8,8,8,8,8), and Voice Activity
Factor f/(a +8) =04

Voice | Offered B,

Path | Voice Load | Exact Monte Carlo Knapsack Error
P P} Value Summation Approximation | %
1 1.0 0.014202 | (0.011101, 0.018019) 0.016567 16.65
2 1.0 0.000730 | (0.000000, 0.001098) 0.000837 14.66
3 1.0 0.007371 | (0.005950, 0.011421) 0.007925 7.52
4 1.0 0.007371 { (0.003915, 0.008254) 0.007925 7.52
5 1.0 0.013596 | (0.010745, 0.017536) 0.015753 15.86
1 5.5 0.701485 | (0.688131, 0.717825) 0.703886 0.34
2 5.5 0.209734 | (0.174270, 0.210641) 0.247334 17.93
3 5.5 0.409218 | (0.379417, 0.428384) 0.413480 1.04
4 5.5 0.409218 | (0.384999, 0.433277) 0.413135 0.96
5 5.5 0.630995 | (0.617493, 0.652789) 0.638292 1.16
1 10 0.885902 | (0.858356, 0.887236) 0.869108 -1.89
2 10 0.421298 | (0.361902, 0.432984) 0.475328 12.82
3 10 0.571870 | (0.502697, 0.570099) 0.593330 3.75
4 10 0.571870 | (0.542950, 0.607079) 0.592867 3.67
5 10 0.807232 | (0.777385, 0.817837) 0.806672 0.07
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Table 3. 100x Probability of Queueing Data for Different Voice and Data Loads, Voice

Activity Factors, and Node Transceiver Vector T = (8,8,8,8,8,8,8,8,8,8)

B/(a+B)=104 B/(a+B)=08 B/(a+B)=10

Voice { Data Q Q Q

Load | Load | Exact | Knapsack | Error | Exact | Knapsack | Error | Exact | Knapsack | Error
pY p° | Value | Approx. % Value | Approx. % Value | Approx. %
0.1 0.5 0.00 0.00 0.00 | 0.00 0.00 0.00 { 0.00 0.00 0.00
0.1 2.5 | 0.561 0.563 0.36 | 0.729 0.730 0.14 | c.827 0.827 0.00
0.1 4.0 6.319 6.321 0.03 | 7.313 7.315 0.03 | 7.852 7.852 0.00
1.0 0.5 | 0.016 0.023 43.75 | 0.719 0.743 3.34 | 2.202 2.250 2.18
1.0 2.5 | 3.658 3.710 1.42 | 14.022 | 14.077 0.39 | 22.102{ 22.102 0.00
1.0 4.0 | 18.994 19.096 0.53 | 41.084 41.051 -0.08 | 52.352 52.223 -0.25
2.0 0.5 | 0.169 0.184 8.88 | 5.934 5.875 -0.99 | 17.536 | 17.368 | -0.25
2.0 2.5 | 9.704 9.579 -1.29 { 41.319 | 40400 | -2.24 | 59.504 | 58.066 | -2.42
2.0 4.0 |34.945| 33.929 | -2.91 73337 72.121 -1.66 | 84.803 | 83.551 -1.48
3.5 0.5 | 0.430 0.412 -4.18 | 13.750 | 13.344 | -2.95 { 39.469 | 38.276 | -3.02
3.5 2.5 | 15.318 | 14.991 -2.13 | 62.819 | 61.211 -2.56 | 82.570 | 80.611 -2.37
3.5 4.0 | 46.638 45.838 -1.72 | 87.403 72.121 -1.46 | 95.741 94.775 -1.01
5.5 0.5 0.625 0.597 4.48 | 19.891 19.298 -2.98 | 55.611 54.038 -2.38
5.5 2.5 | 18.868 | 18.491 -1.99 | 74.061 | 72.677 | -1.87 191.884 | 90.556 | -1.15
5.5 4.0 |53.027 | 52.286 1.40 | 94.322 | 93.527 | -0.84 | 98.617 | 98.172 | -0.45
10. 0.5 | 0.865 0.804 -7.05 | 26.723 | 25.830 | -3.34 | 70.170 | 70.262 | -2.64
10. 2.5 }22.286| 21.816 | -2.11 |183.032| 81.898 | -1.36 | 97.437| 96.739 | -0.72
10. 4.0 | 58.569 | 57.815 1.28 1 97.608 | 97.203 | -0.41 | 99.761 | 99.624 | -0.14
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Table 4a. 100x Probability of Queueing Data, for Voice Loads 5* = p; = 0.1, for
Different Data Loads and Voice Activity Factors, and Node Transceiver
Vector T = (8,8,8,8,8,8,8,8,8,8)

B/(a+B)=04 B/(a+B)=08 B/(a +8)=1.0

Data | Data Q Q: Q:

Link | Load | Exact | Knapsack | Error | Exact | Knapsack | Error | Exact | Knapsack | Error
l p{ | Value | Approx. % | Value { Approx. % | Value | Approx. %
1 0.5 | 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -
2 0.5 | 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -
3 0.5 | 0.00 0.00 - 0.00 000 - 0.00 0.00 -
4 0.5 | 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -
5 0.5 | 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -
6 0.5 | 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -
7 0.5 | 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -
8 0.5 | 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -
9 6.5 | 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -

1 2.5 | 0.514 0.515 0.19 | 0.616 0.617 0.16 | 0.673 0.673 0.00
2 2.5 | 0.514 0.515 0.19 | 0.616 0.617 0.16 | 0.673 0.673 0.00
3 2.5 | 0.605 0.606 1.56 | 0.822 0.822 0.00 | 0.946 0.946 0.00
4 2.5 | 0.562 0.564 0.35 | 0.734 0.734 0.00 | 0.833 0.834 0.12
5 2.5 | 0.562 0.564 1.31 | 0.734 0.734 0.00 | 0.833 0.834 0.12
6 2.5 | 0.980 0.980 0.00 | 0.834 0.834 0.00 | 0.980 0.980 0.00
7 2.5 | 0.562 0.564 1.31 | 0.734 0.734 0.00 | 0.833 0.834 0.12
8 2.5 | 0.562 0.564 1.31 | 0.734 0.734 0.00 | 0.833 0.834 0.12
9 2.5 | 0.562 0.564 1.31 | 0.734 0.734 0.00 | 0.833 0.834 0.12
1 4.0 | 6.013 6.015 0.03 | 6.649 6.650 0.02 | 6.986 6.986 0.00
2 4.0 | 6.013 6.015 0.03 | 6.649 6.650 0.02 | 6.986 6.986 0.00
3 4.0 | 6.601 6.603 0.03 | 7.882 7.883 0.02 | 8.566 8.566 0.00
4 4.0 | 6.324 6.326 0.03 | 7.334 7.336 0.03 | 7.885 7.885 0.00
5 40 | 6.324 6.326 0.03 | 7.334 7.336 0.03 | 7.885 7.885 0.00
6 4.0 | 6.624 6.625 0.015 | 7.971 7.972 0.02 | 8.705 8.706 0.00
7 4.0 | 6.324 6.324 0.00 | 7.334 7.336 0.03 | 7.885 7.885 0.00
8 4.0 | 6.324 6.326 0.03 | 7.334 7.336 0.03 | 7.885 7.885 0.00
9 40 | 6.324 6.326 0.03 | 7.334 7.336 0.03 | 7.885 7.885 0.00
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Table 4b. 100x Probability of Queueing Data, for Voice Loads 5* = p; = 1.0, for

Different Data Loads and Voice Activity Factors, and Node Transceiver

Vector T = (8,8,8,8,8,8,8,8,8,8)

Bl(a+B)=04 B/(a+B)=08 Blla+B)=1.0

Data | Data Q Qi Q

Link | Load | Exact | Knapsack | Error | Exact | Knapsack | Error | Exact | Knapsack | Error
l p¢ | Value | Approx. % | Value | Approx. % Value | Approx. %
1 0.5 | 0.002 0.006 200 | 0.130 0.143 10.00 | 0.410 0.430 4.88
2 0.5 | 0.002 0.006 200 | 0.130 0.143 10.00 | 0.410 0.430 4.88
3 0.5 | 0.019 0.033 73.68 | 0.889 0.921 3.60 | 2.719 2.780 2.24
4 0.5 | 0.018 0.028 55.55 | 0.795 0.824 3.65 | 2.446 2.511 2.66
5 0.5 | 0.018 0.028 55.55 | 0.795 0.824 3.65 | 2.446 2.511 2.66
6 0.5 | 0.031 0.018 41.94 | 1.348 1.395 2.13 | 4.052 4.052 0.00
7 0.5 | 0.018 0.028 55.55 | 0.824 1.359 64.93 | 2.446 2.551 4.29
8 0.5 | 0.018 0.028 55.55 | 0.795 0.824 3.65 | 2.446 2.551 4.29
9 0.5 | 0.018 0.028 55.55 | 0.795 0.795 0.00 | 2.446 2.551 4.29
1 2.5 | 2.073 2.115 2.03 | 6.659 6.730 1.07 | 10.486 | 10.581 0.91
2 2.5 | 2.073 2.115 2.03 | 6.659 6.730 1.07 | 10.486 | 10.581 0.91
3 2.5 | 4479 4.549 1.56 | 17.166 | 17.217 0.29 | 26.923 | 26.862 -0.22
4 2.5 | 3.821 3.821 0.00 | 15.031 { 15.080 0.33 [26.886 | 23.831 |-11.36
5 2.5 | 3.821 3.871 1.31 | 15.031 | 15.080 0.33 | 23.886 | 23.831 -0.23
6 2.5 | 5.188 5.260 1.39 | 20.560 | 20.641 0.39 | 31.856 | 31.859 0.00
7 2.5 | 3.821 3.871 1.31 | 15.031 | 15.080 0.33 | 23.886 | 23.831 |-11.36
8 2.5 | 3.821 3.871 1.31 | 15.031 | 15.0R1 0.33 | 23.886 | 23.831 |-11.36
9 2.5 | 3.821 3.871 1.31 | 15.031 | 15.080 0.33 | 23.886 | 23.831 |-11.36
1 4.0 |13.490]| 13.606 0.86 | 26.953 | 26.988 0.13 | 34.960 | 34.904 [ -0.16
2 40 |13.490| 13.606 0.86 | 26.953 | 26.953 0.00 | 34.960 | 34.907 -0.15
3 4.0 |22.250 | 22.353 0.46 | 48.131 | 48.131 0.00 | 60.682 | 60.524 -0.32
4 4.0 |19.525 19.619 0.48 | 43.041 42917 -0.29 { 55.032 54.856 -0.32
5 4.0 | 19.525 19.619 0.48 | 43.041 42.917 -0.29 | 55.032 | 54.856 -0.32
6 4.0 |24.089 | 24.207 0.49 | 52.516 | 52.556 0.07 65402 | 65.393 | -0.01
7 4.0 |19.525| 19.619 0.48 | 43.041 | 42.917 | -0.29 | 55.032 | 54.856 | -0.32
8 40 |19.525| 19.619 0.48 | 43.041 | 42917 | -0.29 | 55.032 | 54.856 | -0.32
9 4.0 |19.525| 19.619 0.48 | 43.041 | 42917 | -0.29 | 55.032| 54.856 | -0.32
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Table 4c. 100x Probability of Queueing Data, for Voice Loads p° = py = 2.0, for
Different Data Loads and Voice Activity Factors, and Node Transceiver
Vector T = (8,8,8,8,8,8,8,8,8,8)

B/(atf) =04 Bl(at f) =08 B/(a+f) =10

Data | Data Qi Q Qi

Link | Load | Exact | Knapsack | Error | Exact | Knapsack | Error | Exact | Knapsack | Error
l p? | Value | Approx. % Value | Approx. % | Value | Approx. G
1 0.5 | 0.193 0.095 -50.78 | 1.688 1.727 2.31 | 5.085 5.253 3.30
2 0.5 | 0.191 0.095 -50.28 | 1.688 1.727 231 | 5.085 5.253 3.30
3 0.5 | 0.437 0.354 -18.99 | 7.510 7.392 -2.41 | 21926 | 21.562 -1.66
4 0.5 | 0.360 0.279 -22.50 | 6.418 6.333 -1.32 | 19.231 18.958 -1.42
5 0.5 | 0.360 0.279 -22.50 | 6.418 6.333 -1.32 | 19.231 18.958 -1.42
6 0.5 | 0.560 0.495 -11.61 | 10.430 10.368 -0.59 | 29.570 29.461 -0.37
7 0.5 | 0.360 0.279 -22.50 | 6.418 6.333 -1.32 | 19.231 18.958 -1.42
8 0.5 | 0.360 0.279 -22.50 | 6.418 6.331 -1.35 | 19.231 18.952 -1.45
9 0.5 | 0.360 0.279 -22.50 | 6.418 6.333 -1.32 | 19.231 18.956 -1.43
1 2.5 | 6.950 6.836 -1.64 | 22.198 21.868 -1.49 | 34.654 33.990 -1.92
2 2.5 | 6.950 6.836 -1.64 { 22.198 ( 21.868 -1.49 | 34.654 ] 33.990 -1.92
3 2.5 |15.750 | 14.820 -5.84 | 48.730 | 48.559 -2.35 | 69.777 | 68.087 -2.92
4 2.5 12493 | 12.140 -2.82 |1 44.225 | 42972 -2.83 | 63.989 | 62.043 -3.04
G} 2.5 | 12.493 12.140 -2.82 144225 | 42972 -2.83 | 63.989 | 62.043 -3.04
6 2.5 |17.381 17.331 -0.29 | 56.619 | 56.462 -0.28 | 76.507 | 76.330 -0.23
7 2.5 | 12.493 12.140 -2.83 | 44.225 42.970 -2.92 | 63.989 62.041 -3.04
8 2.5 112493 | 12135 -2.87 | 44.225 | 42.965 -2.85 | 63.989 | 62.034 -3.04
9 2.5 |12.493 12.140 -2.82 |1 44.225| 42.970 -2.92 | 63.989 | 62.041 -3.04
1 4.0 | 28411 27.943 -1.65 | 53.795 52.836 -1.78 | 67.209 65.870 -1.98
2 4.0 | 28.411 27.943 -1.65 | 53.795 52.836 -1.78 | 67.209 65.879 -1.98
3 4.0 | 47.734 46.904 -1.74 | 82.588 81.412 -1.42 | 92.433 91.445 -1.07
4 4.0 | 41.161 40.244 -2.23 | 76.716 | 75.168 -2.02 | 88.363 | 86.855 -1.71
5 4.0 | 41.161 40.244 -2.23 176.716 | 75.168 -2.02 | 88.363 | 86.855 -1.71
6 4.0 | 51.141 91.031 -0.22 | 86.280 86.172 -0.13 | 94.567 | 94.487 -0.08
7 4.0 ]41.161 40.243 -2.23 | 76.716 75.166 -2.02 | 88.363 86.854 -1.71
8 4.0 | 41.161 40.234 -2.25 | 76.716 75.162 -2.02 | 88.363 86.850 -1.71
9 4.0 | 41.161 40.243 -2.23 | 76.716 75.166 -2.02 | 88.363 86.854 -1.711
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Table 5. Probability of Voice Blocking for Different Traffic Loads, Node Transceiver
Vector T = (4,4,4,4,4,4,4,4,4,4), Voice Activity Factor 8/(a + 8) = 04,

and No Admission Control

Offered B
Voice Load | Exact Knapsack Error
i Value | Approximation| %

0.1 0.000292 0.000327 11.98
0.5 0.050059 0.058689 17.24
1.0 0.195044 0.215835 10.66
2.0 0.417121 0.442862 6.17
3.0 0.541520 0.569988 5.62
4.0 0.619669 0.649299 4.78
5.0 0.673842 0.703402 4.39
6.0 0.713922 0.742704 4.03
7.0 0.744934 0.772556 3.71
8.0 0.769724 0.796051 3.42
10.0 0.807006 0.830684 2.93
15.0 0.862375 0.880563 2.11

133




Table 6. 100x Probability of Queueing Data for Various Voice and Data Loads,
Voice Activity Factor f/(a + f) = 0.4 and Node Transceiver Vector
I =(4,4,4,4,4,4,4,4,4,4)

Offered Offered Q
Voice Load | Data Load | Exact Knapsack Percent
p° P Value | Approximation | Error (%)
0.1 0.2 0.033 0.034 3.03
0.1 1.0 2.860 2.860 0.00
0.1 2.0 20.796 19.687 -5.33
1.0 0.2 1.636 1.585 -3.12
1.0 1.0 14.590 14.202 -2.66
1.0 2.0 45.702 44.874 -1.81
5.0 0.2 4.762 4.505 -5.40
5.0 1.0 27.737 26.754 -3.54
5.0 2.0 64.540 63.299 -1.92
10.0 0.2 5.773 5.411 -6.27
10.0 1.0 31.143 29.915 -3.94
10.0 2.0 68.419 67.173 -1.82
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Table 7a. 100x Probability of Queueing Data at Each Link for Voice Loads 5" =
pp = 0.1, Different Data Loads, T = (4,4,4,4,4,4,4,4,4,4), and Voice
Activity Factor 8/(a + 8) =04

Data | Offered Q!

Link | Data Load | Exact Knapsack Error
l ot Value | Approximation | %
1 0.2 0.020 0.021 5.00
2 0.2 0.020 0.021 5.00
3 0.2 0.042 0.043 2.38
4 0.2 0.033 0.034 3.03
5 0.2 0.033 0.034 3.03
6 0.2 0.046 0.047 2.17
7 0.2 0.033 0.034 3.03
8 0.2 0.033 0.034 3.03
9 0.2 0.033 0.034 3.03
1 1.0 2.527 2.528 0.04
2 1.0 2.527 2.528 0.04
3 1.0 3.154 3.155 0.03
4 1.0 2.867 2.867 0.00
5 1.0 2.867 2.867 0.00
6 1.0 3.194 3.194 0.00
7 1.0 2.867 2.867 0.00
8 1.0 2.867 2.867 0.00
9 1.0 2.867 2.867 0.00
1 2.0 18.538 18.540 0.01
2 2.0 18.538 18.540 0.01
3 2.0 20.747 20.749 0.01
4 2.0 19.703 19.705 0.01
5 2.0 19.703 19.705 0.01
6 20 . |20.825 20.827 0.05
7 2.0 19.703 19.705 0.01
8 2.0 19.703 19.705 0.01
9 2.0 19.703 19.705 0.01
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Table 7b. 100x Probability of Queueing Data at Each Link for Voice Loads 5° =
py = 1.0, Different Data Loads, T = (4,4,4,4,4,4,4,4,4,4), and Voice
Activity Factor 8/(a+ 8) =04

Data | Offered Qi

Link | Data Load | Exact Knapsack Error
l of Value | Approximation | %
1 0.2 0.820 0.796 -2.93
2 0.2 0.820 0.796 -2.93
3 0.2 2.219 2.130 -4.01
4 0.2 1.645 1.589 -3.40
5 0.2 1.645 1.589 -3.40
6 0.2 2.639 2.599 -1.52
7 0.2 1.645 1.589 -3.40
8 0.2 1.645 1.589 -3.40
9 0.2 1.645 1.589 -3.40
1 1.0 9.928 9.676 -2.54
2 1.0 9.928 9.676 -2.54
3 1.0 18.381 17.832 -2.99
4 1.0 14.670 14.226 -3.02
5 1.0 14.670 14.226 -3.02
6 1.0 19.721 19.524 -0.99
7 1.0 14.670 14.226 -3.02
8 1.0 14.670 14.203 -3.18
9 1.0 14.670 14.226 -3.02
1 2.0 37.127 36.479 -1.75
2 2.0 37.127 36.479 -1.75
3 2.0 53.274 52.282 -1.86
4 2.0 45.880 44.920 -2.09
5 2.0 45.880 44.920 -2.09
6 2.0 54.387 54.070 -0.58
7 2.0 45.880 44.920 -2.09
8 2.0 45.880 44.879 -2.18
9 2.0 45.880 44.920 -2.09
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Table 7c. 100x Probability of Queueing Data at Each Link for Voice Loads 5 =
py = 5.0, Different Data Loads, I = (4,4,4,4,4,4,4,4,4,4), and Voice
Activity Factor 8/(a + 8) =0.4

Data | Offered Q

Link | Data Load | Exact Knapsack Error
l o Value | Approximation | %
1 0.2 3.560 3.202 -10.06
2 0.2 3.560 3.202 -10.06
3 0.2 7.074 6.263 -11.46
4 0.2 4.285 4.215 -1.63
o 0.2 4.285 4.216 -1.61
6 0.2 7.235 6.909 -4.50
7 0.2 4.285 4.213 -1.68
8 0.2 4.285 4.113 -4.01
9 0.2 4.285 4.213 -1.68
1 1.0 23.141 21.667 -6.37
2 1.0 23.141 21.667 -6.37
3 1.0 37.104 34.331 -7.47
4 1.0 25.917 25.615 -1.16
S 1.0 25.917 25.617 -1.16
6 1.0 36.666 35.430 -3.37
7 1.0 25.917 25.608 -1.19
8 1.0 25.917 25.238 -2.62
9 1.0 25.917 25.609 -1.19
1 2.0 58.607 56.549 -3.51
2 2.0 58.607 56.549 -3.51
3 2.0 76.910 73.960 -3.84
4 2.0 62.263 61.840 -0.68
o 2.0 62.263 61.840 -0.68
6 2.0 75.419 73.927 -1.98
7 2.0 62.263 61.832 -0.69
8 2.0 62.263 61.360 -1.45
9 2.0 62.263 61.832 -0.69
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Table 7d. 100x Probability of Queueing Data at Each Link for Voice Loads 5* =
py = 10.0, Different Data Loads, T = (4,4,4,4,4,4,4,4,4,4), and Voice
Activity Factor 8/(a + 8) =04 .

Data | Offered Qi .
Link | Data Load | Exact Knapsack Error
l o Value | Approximation | %
1 0.2 4.684 4.193 -10.48
2 0.2 4.684 4.192 -10.50
3 0.2 8.786 7.567 -13.87
| 4 0.2 5.023 4.958 -1.29
| 5 0.2 5.023 4.958 -1.29
| 6 0.2 8.694 8.110 -6.72
i 7 0.2 5.022 4.956 -1.31
1 8 0.2 5.022 4.812 -4.18
| 9 0.2 5.022 4.956 -1.31
‘ 1 10 [27.294|  25.533 -6.45
| 2 1.0 27.294 25.529 -6.47
‘ 3 1.0 42.279 38.508 -9.39
4 1.0 28.449 28.223 -0.79
5 1.0 28.449 28.225 -0.79
| 6 1.0 41.173 39.049 -5.16
| 7 10 | 28449 28.218 -0.81
| 8 1.0 | 28449 27.731 -2.52
i 9 1.0 28.449 28.219 -3.40
1 2.0 63.910 61.736 -3.40
2 2.0 63.910 61.732 -3.41
3 2.0 81.697 78.150 -4.34
| 4 2.0 65.276 65.007 -0.41
| 5 2.0 65.276 65.009 -0.41
6 2.0 79.873 77.490 -2.98
7 2.0 65.276 65.002 -0.42
8 2.0 65.276 65.430 0.24
9 2.0 65.276 65.002 -0.42
138




Table 8. Probability of Voice Blocking for Different Traffic Loads
Node Transceiver Vector T = (8,8,8,8,8,8,8,8,8,8)
Voice Transceiver Vector T° = (5,7,7,7,4,7,4,7,7,7)
Data Link Capacity Vector ¢¢ =(1,1,1,1,1,1,1,1,1)
Voice Activity Factor g/(a + ) =04

Voice Offered B,
Path | Voice Load | Exact | Monte Carlo Knapsack Error
P ' Value | Summation | Approximation| %
1 2.5 0.634 | (0.673, 0.686) 0.705 11.19
2 2.5 0.144 | (0.133, 0.150) 0.147 2.08
3 2.5 0.429 | (0.416, 0.433) 0.416 -3.03
4 2.5 0.429 | (0.416, 0.433) 0.416 -3.03
5 2.5 0.641 | (0.627, 0.642) 0.658 2.65
Average 2.5 0.465 | (0.453, 0.69) 0.468 0.65
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Table 8. Average Data Delay for Different Voice and Data Loads
Node Transceiver Vector T = (8,8,8,8,8,8,8,8,8,8)
Voice Transceiver Vector T* =(5,7,7,7,4,7,4,7,7,7)
Data Link Capacity Vector ¢ =(1,1,1,1,1,1,1,1,1)
Voice Activity Factor 8/(a + 8) = 0.4

Offered Offered w

Voice Load | Data Load | Exact Knapsack Error
p® p* Value | Approximation | %
2.5 0.7 0.021 0.023 9.52
2.5 0.9 0.062 0.071 14.51
2.5 0.999 5.050 5.806 14.97
10. 0.7 0.034 0.036 5.88
10. 0.9 0.108 0.111 2.78
10. 0.999 9.324 9.599 2.95
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Table 10a. Average Data Delay at Each Link for Voice Loads 5% = py = 2.5, Dif-
ferent Data Loads, T = (8,8,8,8,8,8,8,8,8,8), T® = (5,7,7,7,4,7,4,7,7, 7),
¢ =(1,1,1,1,1,1,1,1,1), and Voice Activity Factor f/(a + 8) = 0.4

Data | Offered Wi

Link | Data Load | Exact Knapsack Error
l ot Value | Approximation | %
1 0.7 0.004 0.006 50.00
2 0.7 0.004 0.006 50.00
3 0.7 0.026 0.028 7.69
4 0.7 0.023 0.026 13.04
5 0.7 0.023 0.026 13.04
6 0.7 0.039 0.039 0.00
7 6.7 0.023 0.026 13.04
8 0.7 0.023 0.026 13.04
9 0.7 0.023 0.026 13.04
1 0.9 0.011 0.017 54.55
2 0.9 0.011 0.017 54.55
3 0.9 0.077 0.086 11.69
4 0.9 0.068 0.079 16.18
5 0.9 0.068 0.079 16.18
6 0.9 0.119 0.120 0.84
7 0.9 0.068 0.079 16.18
8 0.9 0.068 0.079 16.18
9 0.9 0.068 0.079 16.18
1 0.999 0.743 1.149 54.64
2 0.999 0.743 1.149 54.64
3 0.999 6.210 7.097 14.28
4 0.999 5.516 6.512 18.06
5 0.999 5.516 6.512 18.06
6 0.999 10.175 10.297 1.20
7 0.999 5.516 6.512 18.06
8 0.999 5.516 6.511 18.04
9 0.999 5.516 6.512 18.04
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Table 10b. Average Data Delay at Each Link for Voice Loads 5* = p; = 10.0, Dif-
ferent Data Loads, T = (8,8,8,8,8,8,8,8,8,8), I* = (5,7,7,7,4,7,4,7,7,7),
¢ =(1,1,1,1,1,1,1,1,1), and Voice Activity Factor 8/(a + 8) = 0.4

Data | Offered Wi

Link | Data Load | Exact Knapsack Error
l pt Value | Approximation | %
1 0.7 0.013 0.013 0.00
2 0.7 0.013 0.013 0.00
3 0.7 0.046 0.046 0.00
4 0.7 0.035 0.037 5.71
o 0.7 0.035 0.037 5.71
6 0.7 0.063 0.063 0.00
7 0.7 0.035 0.037 5.7
8 0.7 0.035 0.037 9.71
9 0.7 0.035 0.037 5.71
1 0.9 0.039 0.039 0.00
2 0.9 0.039 0.039 0.00
3 0.9 0.143 0.142 -0.70
4 0.9 0.110 0.116 5.45
S 0.9 0.110 0.116 5.45
6 0.9 0.202 0.200 -0.99
7 0.9 0.110 0.116 5.45
8 09 0.110 0.115 4.45
9 0.9 0.110 0.116 5.45
1 0.999 3.032 3.029 -0.09
2 0.999 3.032 3.029 -0.09
3 0.999 12.390 12.350 -0.32
4 0.999 9.458 10.008 5.82
o 0.999 9.458 10.009 5.83
6 0.999 18.173 18.007 -0.91
7 0.999 9.458 10.006 5.79
8 0.999 9.458 9.949 5.19
9 0.999 9.458 10.006 5.79
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Table 11. Percentage of Voice Calls Blocked for Different Capacity Allocations

in the Multi-Rate Network of [6]
Capacity Allocation 1 ¢ = (90,100,110,120)
Capacity Allocation 2 ¢ = (18,20,22,24)
Capacity Allocation 3 ¢ = (9,10,11,12)

Capacity Allocation 4 ¢ = (5,5,6,6)

Vector of Voice Path Rates r =(1,1,1,1,1,1,5,5,5,5, 5, 5)
Voice Activity Factor 8/(a + 8) = 0.4

Offered B

Capacity | Voice Load | Monte Carlo Knapsack Pascal

Allocation p° Summation | Approximation | Approximation
1 8.0 (0.052, 0.058) 0.061 0.072
1 10.0 (0.669, 0.732) 0.741 0.756
1 15.0 (9.947, 10.275) 10.359 10.487
2 0.3 (0.042, 0.042) 0.042 0.109
2 0.7 (0.707, 0.785) 0.779 0.921
2 1.7 (9.466, 9.686) 10.137 9.758
3 0.004 (0.049, 0.070) 0.061 0.038
3 0.04 (0.630, 0.696) 0.681 0.437
3 0.4 (9.884, 10.096) 10.613 8.857
4 0.0002 (0.046, 0.046) 0.048 0.045
4 0.003 (0.629, 0.679) 0.714 0.677
4 0.05 (9.626, 9.864) 10.584 9.999
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Table 12a. Percentage of Voice Calls Blocked at Each Path for Average
Voice Loads p° = 8.0, 10.0, and 15.0 Capacity Allocation 1, ¢ =
(90,100,110,120), r = (1,1,1,1,1,1,5,5,5,5,5,5), and Voice Activity Factor

B/(a+ ) =04

Voice | Offered B,

Path | Voice Load | Monte Carlo Knapsack Pascal
P Py Summation | Approximation | Approximation
1 8.0 (0.008, 0.030) 0.028 0.034
2 8.0 (0.002, 0.034) 0.025 0.030
3 8.0 (0.002, 0.034) 0.025 0.029
4 8.0 (0.001, 0.001) 0.003 0.005
5 8.0 (0.001, 0.001) 0.003 0.004
6 8.0 (0.000, 0.004) 0.000 0.001
7 1.6 (0.194, 0.207) 0.213 0.247
8 1.6 (0.144, 0.217) 0.191 0.218
9 1.6 (0.157, 0.199) 0.189 0.214
10 1.6 (0.000, 0.048) 0.028 0.038
11 1.6 (0.000, 0.052) 0.025 0.034
12 1.6 (0.000, 0.022) 0.003 0.005
1 10.0 (0.34, 0.35) 0.36 0.36
2 10.0 (0.29, 0.30) 0.30 0.31
3 10.0 (0.28, 0.29) 0.29 0.30
4 10.0 (0.07, 0.07) 0.07 0.08
5 10.0 (0.06, 0.06) 0.06 0.07
6 10.0 (0.01, 0.01) 0.01 0.01
7 2.0 (2.29, 2.30) 2.35 2.38
8 2.0 (1.96, 1.98) 1.99 2.01
9 2.0 (1.90, 1.92) 1.92 1.93
10 2.0 (0.49, 0.50) 0.53 0.57
11 2.0 (0.43, 0.44) 0.46 0.49
12 1.6 (0.08, 0.08) 0.09 0.11
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Table 12a (cont’d)

Voice | Offered B,

Path | Voice Load | Monte Carlo Knapsack Pascal
P Py Summation | Approximation | Approximation
1 15.0 (5.70, 5.70) 5.70 5.70
2 15.0 (4.60, 4.60) 4.60 4.60
3 15.0 (4.10, 4.20) 4.20 4.20
4 15.0 (2.40, 2.40) 2.50 2.50
5 15.0 (1.90, 1.90) 2.00 2.00
6 15.0 (0.80, 0.80) 0.90 0.90
7 3.0 (28.00, 28.10) 28.60 28.50
8 3.0 (23.30, 23.40) 23.80 23.70
9 3.0 (21.40, 21.40) 21.60 21.60
10 3.0 (13.20, 13.20) 13.80 13.70
11 3.0 (10.90, 11.00) 11.40 11.30
12 3.0 (4.80, 4.80) 5.40 5.40
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Table 12b. Percentage of Voice Calls Blocked at Each Path for Average Voice
Loads p5* = 0.3, 0.7, and 1.7, Capacity Allocation 2, ¢ = (18,20,22,24),
r=(1,1,1,1,1,1,5,5,5,5,5,5) and Voice Activity Factor 8/(a + 8) =04

Voice | Offered B,

Path | Voice Load | Monte Carlo Knapsack Pascal
P Py Summation | Approximation | Approximation
1 0.3 (0.003, 0.003) 0.006 0.025
2 0.3 (0.003, 0.003) 0.005 0.021
3 0.3 (0.003, 0.003) 0.004 0.019
4 0.3 (0.000, 0.000) 0.002 0.011
5 0.3 (0.000, 0.000) 0.002 0.009
6 0.3 (0.000, 0.000) 0.001 0.005
7 0.06 (0.134, 0.176) 0.148 0.339
8 0.06 (0.090, 0.130) 0.107 0.281
9 0.06 (0.078, 0.134) 0.102 0.256
10 0.06 (0.034, 0.086) 0.059 0.149
11 0.06 (0.056, 0.056) 0.054 0.123
12 0.06 (0.000, 0.023) 0.012 0.056
1 0.7 (0.166, 0.227) 0.202 0.243
2 0.7 (0.148, 0.209) 0.184 0.202
3 0.7 (0.143, 0.186) 0.167 0.182
4 0.7 (0.033, 0.085) 0.069 0.119
5 0.7 (0.030, 0.058) 0.052 0.099
6 0.7 (0.000, 0.059) 0.034 0.058
7 0.14 (2.214, 2.402) 2.410 2.708
8 0.14 (1.791, 1.966) 1.946 2.258
9 0.14 (1.616, 1.773) 1.737 2.033
10 0.14 (1.022, 1.149) 1.147 1.352
11 0.14 (0.836, 0.958) 0.937 1.125
12 0.14 (0.375, 0.464) 0.465 0.668
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Table 12b (cont’d)

Voice | Offered B,

Path | Voice Load | Monte Carlo Knapsack Pascal
P Py Summation Approximation | Approximation
1 1.7 (3.135, 3.368) 3.422 3.284
2 1.7 (2.574, 2.778) 2.836 2.780
3 1.7 (2.255, 2.459) 2.526 2.480
4 1.7 (1.826, 2.002) 2.012 1.935
5 1.7 (1.499, 1.665) 1.700 1.633
6 1.7 (0.916, 1.046) 1.103 1.120
7 0.34 (24.198, 24.763) 25.706 24.626
8 0.34 (21.002, 21.547) 22.265 21.311
9 0.34 (19.007, 19.601) 20.065 19.215
10 0.34 (14.912, 15.391) 16.246 15.670
11 0.34 (12.699, 13.148) 13.875 3.423
12 0.34 (8.795, 9.179) 9.885 9.616
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Table 13. 100x Probability of Queueing Data for Different Capacity Allocations
in the Multi-Rate Network of (6]
Capacity Allocation 1 ¢ = (90,100,110,120)
Capacity Allocation 2 ¢ = (18,20,22,24)
Capacity Allocation 3 ¢ =(9,10,11,12)
Capacity Allocation 4 ¢ = (5,5,6,6)
Vector of Voice Path Rates r = (1,1,1,1,1,1,5,5,5,5,5,5)
Voice Activity Factor 8/(a + 8) =0.4

Offered Offered Q
Capacity | Voice Load | Data Load | Monte Carlo Knapsack Pascal
Allocation p° p? Summation Approximation | Approximation
1 8.0 39.0 (0.072, 0.078) 0.072 0.088
| 8.0 49.0 (0.933, 0.956) 0.945 0.988
1 8.0 62.0 (9.747, 9.824) 9.776 9.719
1 10.0 35.0 (0.092, 0.099) 0.094 0.107
1 10.0 43.0 {0.958, 0.982) 0.776 0.807
1 10.0 57.0 (9.643, 9.725) 9.679 9.611
1 15.0 30.0 (0.079, 0.088) 0.083 0.081
1 15.0 38.0 (0.931, 0.966) 0.948 0.931
1 15.0 50.0 (9.947, 10.275) 10.106 10.080
2 0.3 6.0 (0.069, 0.074) 0.071 0.123
2 0.3 9.0 (0.800, 0.817) 0.806 0.806
2 0.3 140 | (13.693, 13.763) 13.724 13.584
2 0.7 4.0 (0.076, 1.083) 0.081 0.136
2 0.7 7.5 (0.985, 1.012) 1.006 1.062
2 0.7 12.0 (10.302, 10.387) 10.353 9.818
2 1.7 2.0 (0.089, 0.098) 0.091 0.102
2 1.7 5.0 (1.084, 1.116) 1.079 1.068
2 1.7 10.0 (12.222, 12.335) 12.144 11.693
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Table 13 (cont’d)

Offered Offered Q
Capacity | Voice Load | Data Load | Monte Carlo Knapsack Pascal
Allocation p° i Summation Approximation | Approximation
3 0.004 2.0 (0.080, 0.084) 0.013 0.016
3 0.004 4.0 (1.676, 1.703) 0.901 0.888
3 0.004 6.5 (15.230, 15.290) 12.866 12.864
3 0.04 1.8 (0.091, 0.095) 0.051 0.073
3 0.04 3.6 (1.326, 1.353) 0.822 0.737
3 0.04 6.0 (11.691, 11.759) 9.621 9.536
3 0.4 0.3 (0.059, 0.067) 0.070 0.119
3 04 2.0 (1.071, 1.099) 1.053 1.007
3 0.4 5.0 (11.887, 11.996) 10.929 10.409
4 0.0002 0.8 (0.083, 0.086) 0.084 0.082
4 0.0002 14 (0.889, 0.893) 0.891 0.889
4 0.0002 2.8 (12.345, 12.348) 12.347 12.348
4 0.003 0.7 (0.104, 0.116) 0.106 0.068
4 0.003 14 (0.964, 0.978) 0.966 0.940
4 0.003 2.8 (12.460, 12.473) 12.463 12.475
4 0.05 0.01 (0.495, 0.525) 0.539 0.121
4 0.05 1.0 (1.248, 1.298) 1.343 0.795
4 0.05 2.6 (11.255, 11.304) 11.348 11.471
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Table 14. 100x Probability of Queueing Data at Each Link for Different Voice

and Data Loads, Capacity Allocation 2, ¢ = (18,20,22,24), r
(1,1,1,1,1,1,5,5,5,5,5,5), and Voice Activity Factor 8/(a + 8) = 0.4

Data | Offered Offered Q

Link | Voice Load | Data Load | Monte Carlo Knapsack Pascal
l i ot Summation Approximation | Approximation
1 0.3 6.0 (0.208, 0.226) 0.214 0.306
2 0.3 6.0 (0.049, 0.056) 0.054 0.119
3 0.3 6.0 (0.012, 0.017) 0.014 0.047
4 0.3 6.0 (0.003, 0.004) 0.003 0.019
1 0.3 9.0 (2.197, 2.247) 2.214 2.223
2 0.3 9.0 (0.719, 0.749) 0.736 0.805
3 0.3 9.0 (0.208, 0.221) 0.215 0.298
4 0.3 9.0 (0.058, 0.065) 0.060 0.114
1 0.3 14.0 (30.647, 30.793) 30.682 31.033
2 0.3 14.0 (15.219, 15.350) 15.284 14.515
3 0.3 14.0 (6.345, 6.419) 6.403 6.261
4 0.3 14.0 (2.503, 2.549) 2.527 2.528
1 0.7 4.0 (0.206, 0.226) 0.218 0.321
2 0.7 4.0 (0.068, 0.082) 0.075 0.138
3 0.7 4.0 (0.018, 0.024) 0.023 0.060
4 0.7 4.0 (0.004, 0.006) 0.007 0.026
1 0.7 7.5 (2.540, 2.616) 2.583 2.513
2 0.7 7.5 (0.957, 1.001) 0.981 1.075
3 0.7 7.5 (0.317, 0.340) 0.340 0.461
4 0.7 7.5 (0.106, 0.119) 0.119 0.199
1 0.7 12.0 (23.175, 23.380) 23.283 21.744
2 0.7 12.0 (10.997, 11.132) 11.039 10.540
3 0.7 12.0 (4.894, 4.985) 4.976 4.840
4 0.7 12.0 (2.069, 2.126) 2.113 2.147
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Table 14 (cont'd)

Data | Offered Offered Q
Link | Voice Load | Data Load | Monte Carlo Knapsack Pascal
. l F ot Summation | Approximation | Approximation
1 1.7 2.0 (0.212, 0.238) 0.218 0.229
2 1.7 2.0 (0.090, 0.107) 0.008 0.107
) 3 1.7 2.0 (0.031, 0.040) 0.036 0.049
4 1.7 2.0 (0.011, 0.018) 0.014 0.023
1 1.7 5.0 (2.541, 2.632) 2.521 2.351
2 1.7 5.0 (1.088, 0.107) 1.104 1.130
3 1.7 5.0 (0.481, 0.520) 0.488 0.537
4 1.7 5.0 (0.184, 0.207) 0.202 0.254
1 1.7 10.0 (24.714, 24.963) 24.514 23.500
2 1.7 10.0 (13.433, 13.621) 13.383 12.965
3 1.7 10.0 (7.186, 7.331) 7.169 6.830
4 1.7 10.0 (3.443, 3.539) 3.508 3.479
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Table 15. Probability of Voice Blocking for Different Traffic Loads, T=(8,8,8,8,8,8,8,8,8,8)
Voice Activity Factor 8/(a + 8) = 0.4, and Three Types of Admission
Control .

(i) Equal Thresholds = 6 on Individual Voice Path Traflic

Offered B

Voice Load | Exact Monte Carlo Knapsack Percent | Thresholds
p° Value Summation Approximation { Error (%)
2.5 0.185545 | (0.179594, 0.185808) 0.201855 8.79 (6,6,6,6,6)
3.5 0.312365 | (0.302761, 0.316174) 0.331030 5.98 (6,6,6,6,6)
4.5 0.408949 | (0.385203, 0.417037) 0.429108 4.93 (6,6,6,6,6)
5.5 0.482665 | (0.434905, 0.514719) 0.503491 4.31 (6,6,6,6,6)
6.5 0.540419 | (0.505836, 0.540619) 0.561224 3.85 (6,6,6,6,6)
7.5 0.586800 | (0.546001, 0.603585) 0.607042 345 (6,6,6,6,6)
8.5 0.624825 | (0.534647, 0.646869) 0.644257 3.11 (6,6,6,6,6)
10. 0.670493 | (0.616248, 0.705557) 0.688468 2.68 (6,6,6,6,6)
15. 0.766014 | (0.676021, 0.778351) 0.779502 1.76 (6,6,6,6,6)

(ii) Optimal Individual Thresholds < 6
Offered B

Voice Load | Exact Monte Carlo Knapsack Percent | Thresholds
P’ Value Summation Approximation | Error (%)
2.5 0.185512 | (0.183525, 0.186201) 0.202398 9.10 (5,6,6,6,6)
3.5 0.310001 { (0.308286, 0.311606) 0.317236 2.33 (2,6,6,6,5)
4.5 0.400543 | (0.398409, 0.402028) 0.431677 7.77 (2,6,6,6,3)
5.5 0.469876 | (0.468602, 0.471287) 0.509798 8.49 (1,6,6,6,2)
6.5 0.524440 | (0.523098, 0.526017) 0.562409 7.24 (1,6,6,6,2)
7.5 0.569865 | (0.568632, 0.570945) 0.613359 7.63 (1,6,6,6,1)
8.5 0.607519 | (0.606093, 0.608414) 0.647777 6.62 (1,6,6,6,1)
10. 0.654345 | (0.653336, 0.655637) 0.689589 5.39 (1,6,6,6,1)
15. 0.755467 | (0.754448, 0.756588) |  0.778174 300 | (1,6,6,6,1)
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Table 15 (cont’d)

—

(iii) Optimal Full Admission Controls for z, < 6

Offered B
Voice Load | Exact Monte Carlo Knapsack Percent Thresholds

pY Value Summation Approximation | Error (%)

) 2.5 0.185511 | (0.183525, 0.186201) 0.220061 18.62 (5,6,6,6,6,8,8,7,8,8)
3.5 0.309905 | (0.308566, 0.312519) 0.355329 14.66 (3,6,6,6,5,8,8,5,8,8)
4.5 0.399708 | (0.399676, 0.403976) 0.451758 13.02 (2,6,6,6,4,8,8,4,8,8)
5.5 0.468216 | (0.469929, 0.474508) 0.524826 12.09 (2,6,6,6,3,8,8,3,8,8)
6.5 0.522607 | (0.525087, 0.529143) 0.584340 11.81 (2,6,6,6,2,8,8,2,8,8)
7.5 0.567119 | (0.571885, 0.576496) 0.625008 10.21 (2,6,6,6,2,8,8,2,8,8)
8.5 0.605317 | (0.610714, 0.615877) 0.658781 8.83 (2,6,6,6,2,8,8,2,8,8)
10. 0.652700 | (0.658680, 0.664670) 0.699545 7.18 (2,6,6,6,2,8,8,2,8,8)
15. 0.754687 | (0.757665, 0.766253) 0.785185 4.04 (2,6,6,6,2,8,8,2,8,8)
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Table 16. Comparison of Exact Value and Knapsack Approximation of the Probability
of Voice Blocking for Different Threshold Admission Controls, Voice Loads
p° = p% = 2.5, Bf(a + B) = 0.4, and T=(8,8,8,8,8,8,8,8,8,8)

Thresholds=(6,6,6,6,6)

Thresholds=(6,6,6,6,5)

Thresholds=(6,6,6,6,4)

Thresholds=(6,6,6,6.3)

Voice B, B, B, B,

Path | Exact Knaps. Exact Knaps. Exact Knaps. Exact Knaps.
P Value Approx. Value Approx. Value Approx. Value Approx.
1 0.289575 | 0.316342 | 0.288406 | 0.313684 | 0.282039 | 0.306347 | 0.263071 | 0.289559
2 0.047056 | 0.064568 | 0.047098 | 0.064794 | 0.047404 | 0.065425 | 0.048638 | 0.066899
3 0.160361 | 0.168923 | 0.159399 | 0.167262 | 0.154592 | 0.162693 | 0.141113 | 0.152319
4 0.160361 | 0.168906 | 0.159399| 0.167265 | 0.154592 | 0.162744 | 0.141113 | 0.152452
5 0.270387 | 0.290538 | 0.274139| 0.300755 | 0.295341 | 0.329219 | 0.363408 | 0.395894

Mean | 0.185548 | 0.201855 | 0.185688 | 0.202752 | 0.186794 | 0.205286 | 0.191469 | 0.211425

Thresholds=(6,6,6,6,2) | Thresholds=(6,6,6,6,1) | Thresholds=(5,6,6,6,6) | Thresholds=(5,6,6,6,5)

Voice B, B, B, B,

Path | Exact Knaps. Exact Knaps. Exact Knaps. Exact Knaps.
P Value Approx. Value Approx. Value Approx. Value Approx.
1 0.228059 | 0.258735 | 0.182889 | 0.214820 |0.291666 | 0.324804 | 0.290500 | 0.322249
2 0.051652 | 0.069716 | 0.056587 | 0.074001 | 0.046530 | 0.063860 | 0.046571 | 0.064073
3 0.117384 | 0.133544 ] 0.088578 | 0.107302 | 0.159831 | 0.167579 |0.158866 | 0.165881
4 0.117384 | 0.133729 | 0.088578 | 0.107406 | 0.159831 | 0.167581 | 0.158866 | 0.165905
5 0.505113 | 0.525033 | 0.722943 | 0.729526 | 0.269719 | 0.288164 | 0.273474 | 0.298491

Mean | 0.203918 | 0.224151 | 0.227915| 0.246611 | 0.185515 | 0.202398 | 0.185655 | 0.203320

Thresholds=(5,6,6,6,4) | Thresholds=(5,6,6,6,3) | Thresholds=(5,6,6,6,2) | Thresholds=(5,6,6,6,1)

Voice B, B, B, B,

Path | Exact Knaps. Exact Knaps. Exact Knaps. Exact Knaps.
P Value Approx. Value Approx. Value Approx. Value Approx.
1 0.284161 | 0.315225 | 0.265329 | 0.299243 | 0.230826 | 0.270156 | 0.187319 | 0.229298
2 0.046869 | 0.064666 | 0.048063 | 0.066049 | 0.050938 | 0.068647 | 0.055425 | 0.072548
3 0.154044 | 0.161223 | 0.140500 | 0.150680 | 0.116583 | 0.131662 | 0.087227 | 0.105221
4 0.154044 | 0.161299 | 0.140506 | 0.140841 | 0.116583 | 0.131875 | 0.087227 | 0.103339
5 0.294691 | 0.327185 | 0.362802 | 0.394364 | 0.304595 | 0.523975 | 0.722627 | 0.729078

Mean | 0.186762 | 0.205920 | 0.191440 | 0.210235 | 0.163905 | 0.225263 | 0.227965 | 0.247897
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Table 17. Comparison of Exact Value and Knapsack Approximation of the Probability of Voice
Blocking for Different Full Admission Controls, Voice Loads p* = g} = 2.3,

I=(8,8,8,8,8,8,8,8,8,8), and Voice Activity Factor §/(a + f) =04

Th=(6,6,6,6,6,8,8,8,838) | Th=(6,6,6,6,6,8,8,7,8,8) { Th=(6,6,6,6,6,8,8,6,88) | Th=(6,6,6,6,6,8,8,5,8,8)
Voice B, By B, B,
Path Exact Knaps. Exact Knaps. Exact Knaps. Exact Knaps.
p Value Approx. Value Approx. Value Approx. Value Approx.
1 0.280575 | 0.331588 | 0.290114] 0.341043 | 0.299332| 0.358541 | 0.338108 | 0.394865
2 0.047056 | 0.063302 | 0.046979 ] 0.062597 | 0.045832 ! 0.061112 | 0.041908 | 0.058403
3 0.160361 | 0.192089 | 0.159809 | 0.188046 | 0.151728 | 0.179596 | 0.124889 ] 0.164308
4 0.160361 | 0.192232 | 0.159808 | 0.188228 | 0.151728 | 0.179853 ] 0.124889| 0.164312
5 0.270387 | 0.309768 | 0.271007 | 0.319049 |0.281622| 0.338953 | 0.325117| 0.377960
Mean | 0.185548 | 0.217796 | 0.185543 | 0.219793 | 0.186048 | 0.223611 | 0.190982| 0.231969
Th=(6,6,6,6,5,8,8,8,8,8) | Th=(6,6,6,6,5,8,8,7,8,8) | Th=(6,6,6,6,5,8,8,6,8,8) | Th=(6,6,6,6,5,8,8,5,8,8)
Voice By B, B, B,
Path Exact Knaps. Exact Knaps. Exact Knaps. Exact Knaps.
p Value Approx. Value Approx. Value Approx. Value Approx.
1 0.288406 | 0.329649 | 0.288937 | 0.338184 | 0.298430| 0.356612 | 0.338108 | 0.393149
2 0.047098 | 0.063465 | 0.047019| 0.062760 | 0.045855] 0.061269 | 0.041908 | 0.058581
3 0.159399 | 0.190586 | 0.158921| 0.186694 | 0.151316; 0.178507 | 0.124889| 0.163610
4 0.159399 | 0.190735 | 0.158921] 0.186875 | 0.151316] 0.178752 | 0.124889| 0.163605
5 0.274139 | 0.318288 |0.274612| 0.327005 | 0.283788 | 0.345839 | 0.325117 ] 0.383145
Mean | 0.185688 | 0.218545 | 0.185682 | 0.220304 |0.186141| 0.224196 | 0.190982| 0.232418
Th=(6,6,6,6,4,8,8,8,8,8) | Th=(6,6,6,6,4,8,8,7,8,8) | Th=(6,6,6,6,4,88,6,88) | Th=(6,6,6,6,4,8,8,58,8)
Voice B, B, By B,
Path Exact Knaps. Exact Knaps. Exact Knaps. Exact Knaps.
P Value Approx. Value Approx. Value Approx. Value Approx.
1 0.282039 | 0.324108 | 0.282489 | 0.332499 | 0.291800| 0.350841 0.333782| 0.387673
2 0.047404 | 0.063930 | 0.047328 | 0.063232 {0.046101 | 0.061737 | 0.041997 | 0.058941
3 0.154592{ 0.186303 | 0.154254 ] 0.182783 | 0.148010] 0.175258 | 0.123861 0.161392
4 0.154592 | 0.186474 | 0.154254 | 0.182972 | 0.148010| 0.175487 | 0.123861 | 0.161365
5 0.295341 0.342958 | 0.295602 | 0.350382 |0.301656 | 0.366705 | 0.333778 | 0.399807
Mean | 0.186794 | 0.220755 | 0.186785| 0.222374 | 0.191456 | 0.226006 | 0.187115| 0.233836
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Table 18. 100x Probability of Queueing Data for Different Voice Loads and Thresh-
olds, Node Transceiver Vector T = (8,8,8,8,8,8,8,8,8, 8), Data Loads
p* = p{ = 2.5, and Voice Activity Factor 8/(a + ) = 0.4

Offered Q

Voice Load Path Exact Knapsack Percent
Fid Thresholds | Value | Approximation | Error (%)
2.5 (5,6,6,6,6) | 12.073 11.611 -3.83
3.5 (5,6,6,6,5) | 14.054 13.358 -4.95
4.5 (2,6,6,6,3) | 16.012 14.794 -7.61
5.5 (1,6,6,6,2) | 15.284 13.834 -9.49
6.5 (1,6,6,6,2) | 16.778 15.104 -9.98
7.5 (1,6,6,6,1) | 16.839 14.511 -13.82
8.5 (1,6,6,6,1) | 17.897 15.357 -14.19
10. (1,6,6,6,1) | 19.110 16.345 -14.47
15. (1,6,6,6,1) | 21.307 18.474 -13.66
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Table 19. 100x Probability of Queueing Data at Each Link for Data Loads 5 =

p,‘ = 2.5, Different Voice Loads and Control Thresholds, T'=(8, 8,8, 8,8, 8,8, 8,8,8),

and Voice Activity Factor 8/(a + #) = 0.4

Voice Load p¥ = 2.5 Voice Load p" = 3.5 Voice Load p* = 4.5
Thresholds=(5,6,6,6,6) Thresholds=(5,6,6,6,5) Thresholds=(2,6,6,6,3)
Data Q Qi Q
Link | Exact | Knapsack | Error | Exact | Knapsack | Error | Exact | Knapsack | Error
l Value | Approx. % | Value | Approx. % | Value | Approx. %
1 6.864 6.633 -3.37 | 7.814 7.443 -4.75 | 10.232 9.325 -8.86
2 6.864 6.633 -3.37 | 7.814 7.444 -4.74 | 10.232 9.325 -8.86
3 15103 14.573 | -3.51 | 17.818 | 16.854 | -5.41 | 20.562 | 18.905 | -8.06
4 112490 11.998 | -3.94 | 14491 | 13.727 | -5.27 | 16.014 | 14.811 | -7.51
5 |12.490| 11998 | -3.94 | 14491 | 13.726 | -5.28 | 16.014 | 14.810 | -7.52
6 |17.376 | 17.123 | -1.46 [ 20.586 | 19.864 | -3.51 | 23.009 | 21.579 | -6.21
7 [12.490| 11.998 | -3.94 [ 14491 | 13.730 { -5.25 | 16.015| 14.816 | -7.49
8 12.490 11.994 -3.97 | 14.491 13.707 -5.41 | 16.615 14.760 -7.84
9 12 490 11.998 -3.94 | 14.491 13.730 -5.25 | 16.015 14.816 -7.49
Voice Load 5* = 5.5 Voice Load p* = 6.5 Voice Load p° = 7.5
Thresholds=(1,6,6,6,2) Thresholds=(1,6,6,6,2) Thresholds=(1,6,6,6,1)
Data Q Q Q
Link | Exact | Knapsack | Error | Exact | Knapsack | Error | Exact | Knapsack | Error
l Value | Approx. % Value | Approx. % Value | Approx. %
1 9.280 9.127 -1.65 | 10.390 | 10.217 -1.66 | 11.626 [ 11.214 -3.54
2 9.280 9.127 -1.65 | 10.390 | 10.217 -1.66 | 11.626 | 11.214 -3.54
3 ]19.603| 17.888 -8.75 | 21.527 | 19.503 -9.40 | 21.915 | 19.077 | -12.95
4 (15302 13.642 |-10.85|16.753 | 14.843 |-11.40;16.329 | 13.783 | -15.59
5 |15.302]| 13.642 |-10.85}16.753 | 14.843 |-11.40} 16.329] 13.783 | -15.59
6 |22.885] 20.317 |-11.2224.930| 21.992 |-11.78 | 24.733 | 20.581 | -16.79
7 |15.301| 13.646 |-10.82|16.753 | 14.847 |-11.38{16.330| 13.78 |-15.58
8 15.301 13.472 -11.95 { 16.753 14.623 -12.71 | 16.330 13.371 -18.12
9 |15.301| 13.646 |-10.82|16.753 | 14.847 |-11.38( 16.330| 13.786 | -15.58
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Table 19 (cont’d)

Voice Load p* = 8.5
Thresholds=(1,6,6,6,1)

Voice Load 5* = 10.0
Thresholds=(1,6,6,6,1)

Voice Load p* = 15.0
Thresholds=(1,6,6,6,1)

Data Qi 9] Q

Link | Exact | Knapsack | Error | Exact | Knapsack | Error | Exact | Knapsack | Error
l Value | Approx. % Value | Approx. % Value | Approx. %
1 12.389 | 11.962 -3.45 | 13.268 | 12.869 -3.00 | 14.932 | 14.793 -0.93
2 ]12.389| 11.962 -3.45 | 13.268 | 12.870 -3.00 | 14.932 | 14.793 -0.93
3 23239 20.114 |-1345|24.747| 21.356 |-13.70|27.569 | 23.974 |{-13.04
4 |17.373] 14.570 |-16.13 | 18.572| 15.520 |-16.43}20.842| 17.534 |-15.87
5 17373 | 14.570 |-16.13]18.572 | 15.520 |-16.43 | 20.842| 17.535 |-15.87
6 |26.189| 21.654 |[-17.32|27.844| 22936 |-17.63]30.931 | 25.648 |-17.08
7 |17.373| 14.577 |-16.09]18.572 | 15.527 |-16.39 | 20.842 | 17.551 | -15.79
8 117.373| 14.101 |-18.83]18.572 | 14.981 |-19.33 | 20.842| 16.888 |-18.97
9 |17.373| 14.577 |-16.09|18.572 | 15.528 |-16.39|20.842| 17.552 | -15.78
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Table 20. Comparison of Voice-Blocking Performance of Admission Control Policies

Whose Thresholds are Obtained by Optimizing the Knapsack Approximation
Node Transceiver Vector T = (8,8,8,8,8,8,8,8,8,8)
Voice Activity Factor 8/(a+ 8) = 0.4

No Control Knapsack-Based Thresholds Optimal Thresholds

Voice B B B

Load | Exact | Knapsack | Knapsack Path Exact | Gain | Exact Path Gain
p° Value Approx | Approx Thresh Value % Value Thresh %
3.5 |[0.307931| 0.317236 | 0.318865 | (3,8,8,8,8) | 0.305456 | 0.80 | 0.304054 | (2,8,8,8,6) | 0.83
4.5 | 0.401453 | 0.411132 | 0.407689 | (1,8,8,8,8) | 0.386530 | 3.72 | 0.385776 | (1,8,8,8,3) | 3.91
5.5 | 0.472130 | 0.483226 | 0.477817 | (1,8,8,8,8) | 0.453197 | 4.01 | 0.448496 | (1,8,8,8,2) | 5.01
6.5 | 0.527213 | 0.539849 | 0.534412 | (1,8,8,8,4) | 0.507246 | 3.79 | 0.498001 | (1,8,8,8,1) | 5.53
7.5 | 0.571417 | 0.585356 | 0.580005 | (1,8,8,8,3) | 0.550631 | 3.64 | 0.541157 | (1,8,8,8,1)| 5.29
8.5 | 0.607742 | 0.622658 | 0.617512 | (1,8,8,8,2) | 0.584775 | 3.78 | 0.578903 | (1,8,8,8,1) | 4.74
10. | 0.651634 | 0.667461 | 0.662817 | (1,8,8,8,2) | 0.632611 | 2.92 | 0.626443 | (1,8,8,8,1) | 3.86
15. | 0.745317 | 0.761318 | 0.758245 | (1,8,8,8,1) | 0.730823 | 1.94 | 0.730823 | (1,8,8,8,1) | 1.94
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Table 21. Revenue Sensitivities for the Multi-Rate Network of [6]
Link Capacity Vector ¢ = (90,100,110, 120)
Vector of Voice Loads 2’ =(10,10,10,10,10,10,2,2,2,2,2,2)
Vector of Data Loads p* = (50,50, 50, 50)
Vector of Voice Rates r =(1,1,1,1,1,1,5,5,5,5,5,5,)
Vector of Voice Revenue Rates 7= (1.0,1.2,1.4,1.6,1.8,2.0,3.0,3.6,4.2,4.8,5.4,6.0)
Vector of Data Revenue Rates 7¢ = (1.0,1.2,1.4,1.6)
Voice Activity Factor 8/(a + 8) =04

Table 21a. Voice Revenue Sensitivity With Respect to Voice Loads

Voice | Offered oW" [9p}

Path | Voice Load | Monte Carlo Knapsack Pascal
P Py Summation | Approximation | Approximation
1 10.0 (0.88, 0.99) 0.90 0.90
2 10.0 (1.13, 1.24) 1.12 1.12
3 10.0 (1.27, 1.39) 1.33 1.33
4 10.0 (1.50, 1.61) 1.57 1.57
) 10.0 (1.61, 1.81) 1.77 1.77
6 10.0 (1.97, 2.09) 1.99 1.99
7 20 (2.19, 2.43) 2.35 2.37
8 2.0 (3.00, 3.24) 3.07 3.08
9 2.0 (3.54, 3.79) 3.69 3.70
10 2.0 (4.48, 4.73) 4.58 4.57
11 2.0 (5.19, 5.24) 5.21 5.21
12 2.0 (5.75, 6.02) 5.95 5.94
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Table 21b. Data Revenue Sensitivity With Respect to Voice Loads

Voice | Offered aW*/8p?

Path | Voice Load Monte Carlo Knapsack Pascal
P ' Summation Approximation | Approximation
1 10.0 (-0.413765, -0.391275) -0.395828 -0.385843
2 10.0 (-0.334608, -0.313041) -0.321129 -0.314085
3 10.0 (-0.321502, -0.300196) -0.307425 -0.299321
4 10.0 (-0.117725, -0.101117) -0.106280 -0.106447
5 10.0 (-0.104447, -0.088175) -0.092525 -0.091626
6 10.0 (-0.024743, -0.009671) -0.017448 -0.019493
7 2.0 (-2.552438, -2.500914) -2.501584 -2.444003
8 2.0 (-2.038939, -1.992859) -1.997447 -1.960893
9 2.0 (-1.937221, -1.892167) -1.892145 -1.852493
10 2.0 (-0.787522, -0.758234) -0.767471 -0.759875
11 2.0 (-0.682234, -0.654666) -0.659719 -0.648903
12 2.0 (-0.144140, -0.126442) -0.138872 -0.149429

Table 21c. Data Revenue Sensitivity With Respect to Data Loads

Data | Offered oW 9pd
Link | Data Load Monte Carlo Knapsack Pascal
l ot Summation Approximation | Approximation
1 50.0 (0.000519, 0.012731) 0.130102 0.148864
2 50.0 (0.927529, 0.934309) 0.940640 0.940621
3 50.0 (1.356462, 1.359009) 1.356561 1.352288
4 50.0 (1.595059, 1.595804) 1.595164 1.593700
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Table 22. Revenue Sensitivities for the Single-Rate Radio Network of [11]
Node Transceiver Vector T = (8,8,8,8,8,8,8,8,8,8)
Vector of Voice Revenue Rates 7= (1.0,1.2,1.4,1.6,1.8)
Vector of Data Revenue Rates 7¢ =(1.0,1.2,1.4,1.6,1.8,2.0,2.2,2.4,2.6)
Voice Activity Factor §/(a + f) =04

Table 22a. Voice Revenue Sensitivity With Respect To Voice Loads

Voice | Offered ow" /0p;

Path | Voice Load | Exact Knapsack Percent
P 4 Value | Approximation | Error (%)
1 5.5 -0.276503 -0.221452 -19.91
2 5.9 0.628294 0.503593 -19.85
3 5.5 0.412164 0.373352 -9.42
4 5.9 0.455148 0.415531 -8.70
5 5.5 0.103284 0.114084 10.46

Table 22b. Data Revenue Sensitivity With Respect To Voice Loads
Vector of Data Loads p* = (4.0,4.0,4.0,4.0,4.0,4.0,4.0,4.0,4.0)

Voice | Offered W4 /dp?

Path | Voice Load | Exact Knapsack Percent
P Py Value | Approximation | Error (%)
1 5.5 -0.313773 -0.435772 38.88
2 5.5 -0.301060 -0.376670 25.11
3 5.5 -0.096402 -0.277122 187.46
4 55  |-0.327656 -0.427354 30.43
) 5.5 -0.262378 -0.382214 45.67

Vector of Data Loads p¢ = (2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0)

Voice | Offered dW4/8p?

Path | Voice Load | Exact Knapsack Percent
P Py Value | Approximation | Error (%)
1 5.5 -0.068434 -0.089658 31.01
2 5.5 -0.056307 -0.067183 19.31
3 5.5 -0.029062 -0.059503 104.76
4 5.5 -0.073209 -0.088104 20.35
5 5.5 -0.061949 -0.081633 31.77
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Table 22c. Data Revenue Sensitivity With Respect To Data Loads

Vector of Voice Loads = (5.5,5.5,5.5,5.5,5.5)

Data | Offered awd /9p?

Link | Data Load | Exact Knapsack Percent
l ot Value | Approximation | Error (%)
1 4.0 -0.204096 -0.189882 -6.96
2 4.0 -0.244915 -0.227802 -6.99
3 4.0 -0.499528 -0.496486 -0.61
4 4.0 -0.440876 -0.431286 -2.17
S 4.0 -0.495986 -0.485410 -2.13
6 4.0 -0.672845 -0.671192 -0.25
7 4.0 -0.606184 -0.593026 -2.17
8 4.0 -0.661292 -0.645434 -2.40
9 4.0 -0.716399 -0.718822 0.34
1 2.0 0.732983 0.742983 1.36
2 2.0 0.879579 0.891355 1.34
3 2.0 0.755747 0.774882 2.53
4 2.0 1.044098 1.052112 0.77
o 2.0 1.174610 1.183667 0.77
6 2.0 1.048758 1.052783 0.38
7 2.0 1.435631 1.446897 0.78
8 2.0 1.566143 1.580366 0.91
9 2.0 1.696655 2.079021 22.54
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Table 23. Computational Effort Required for the Different Approximations and
Network Models

Radio Network Multi-Rate Network
T =(8,8,8,8,8,8,8,8,8,8) ¢ = (90,100,110,120)
Approximation r=(1,1,1,1,1) r=(1,1,1,1,1,1,5,5,5,5,5,5)
Method Probability of | Probability of | Probability of | Probability of
Voice Blocking | Data Queueing | Voice Blocking | Data Queueing
Exact 20 sec 20 sec prohibitive prohibitive
Monte Carlo 1 min 1 min 25 min 25 min
Knapsack 2 sec 2 sec 2.5 sec 2.5 sec
Pascal 2 sec 2 sec 2.5 sec 2.5 sec
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